The Phase Field Method: Mesoscale Simulation Aiding Material Discovery

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Annual Review of Materials Research Pub Date : 2019-07-01 DOI:10.1146/ANNUREV-MATSCI-070218-010151
M. Tonks, L. Aagesen
{"title":"The Phase Field Method: Mesoscale Simulation Aiding Material Discovery","authors":"M. Tonks, L. Aagesen","doi":"10.1146/ANNUREV-MATSCI-070218-010151","DOIUrl":null,"url":null,"abstract":"Mesoscale modeling and simulation approaches provide a bridge from atomic-scale methods to the macroscale. The phase field (PF) method has emerged as a powerful and popular tool for mesoscale simulation of microstructure evolution, and its use is growing at an ever-increasing rate. While initial research using the PF method focused on model development, as it has matured it has been used more and more for material discovery. In this review we focus on applying the PF method for material discovery. We start with a brief summary of the method, including numerical approaches for solving the PF equations. We then give seven examples of the application of the PF method for material discovery. We also discuss four barriers to its use for material discovery and provide approaches for how these barriers can be overcome. Finally, we detail four lessons that can be learned from the examples on how best to apply the PF method for material discovery.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"51 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/ANNUREV-MATSCI-070218-010151","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 38

Abstract

Mesoscale modeling and simulation approaches provide a bridge from atomic-scale methods to the macroscale. The phase field (PF) method has emerged as a powerful and popular tool for mesoscale simulation of microstructure evolution, and its use is growing at an ever-increasing rate. While initial research using the PF method focused on model development, as it has matured it has been used more and more for material discovery. In this review we focus on applying the PF method for material discovery. We start with a brief summary of the method, including numerical approaches for solving the PF equations. We then give seven examples of the application of the PF method for material discovery. We also discuss four barriers to its use for material discovery and provide approaches for how these barriers can be overcome. Finally, we detail four lessons that can be learned from the examples on how best to apply the PF method for material discovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相场法:辅助材料发现的中尺度模拟
中尺度建模和模拟方法提供了从原子尺度方法到宏观尺度方法的桥梁。相场(PF)方法作为一种强大而流行的中尺度模拟微观结构演变的工具,其应用正以越来越快的速度增长。虽然使用PF方法的最初研究主要集中在模型开发上,但随着它的成熟,它已越来越多地用于材料发现。在这篇综述中,我们的重点是应用PF方法的材料发现。我们首先简要概述了该方法,包括求解PF方程的数值方法。然后,我们给出了PF方法在材料发现中的七个应用实例。我们还讨论了将其用于材料发现的四个障碍,并提供了如何克服这些障碍的方法。最后,我们详细介绍了可以从如何最好地应用PF方法进行材料发现的例子中学到的四个教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
期刊最新文献
Chemical Botany: Bottlebrush Polymers in Materials Science Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel Structural Chirality and Electronic Chirality in Quantum Materials Degradation Processes in Current Commercialized Li-Ion Batteries and Strategies to Mitigate Them Oxygen Redox in Alkali-Ion Battery Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1