Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature

IF 2.9 Q2 ELECTROCHEMISTRY Journal of Electrochemical Science and Engineering Pub Date : 2023-03-27 DOI:10.5599/jese.1595
F.S. Volkov, S. Eliseeva, M. A. Kamenskii, A. Volkov, E. G. Tolstopjatova, V. Kondratiev
{"title":"Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature","authors":"F.S. Volkov, S. Eliseeva, M. A. Kamenskii, A. Volkov, E. G. Tolstopjatova, V. Kondratiev","doi":"10.5599/jese.1595","DOIUrl":null,"url":null,"abstract":"Vanadium oxide composites with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) were obtained by one-step microwave-assisted hydrothermal synthesis at two different temperatures: 120 and 170 °C (denoted as V-120 and V-170, respectively). The structure and composition of the obtained samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectro­scopy (XPS), and thermogravimetric (TG) analysis. The detailed study of the electro­chemical properties of the composites as cathodes of aqueous zinc-ion battery was per­formed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) at different current densities and by electrochemical impedance spectroscopy (EIS). It was shown that V-120 demonstrated excellent electrochemical performance in the 0.3 to 1.4 V vs. Zn/Zn2+ potential range reaching specific capacities of up to 390 mA∙h∙g−1 at 0.3 A∙g−1 with excel­lent capacity stability after 1000 charge-discharge cycles. Its functional parameters were found to be much better than those of the electrodes based on the V-170 composite obtained at a higher temperature. The effect of the synthesis temperature on the electro­chemical properties is discussed in terms of the crystallographic, compositional, and thermogravimetric properties of the samples.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"253 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium oxide composites with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) were obtained by one-step microwave-assisted hydrothermal synthesis at two different temperatures: 120 and 170 °C (denoted as V-120 and V-170, respectively). The structure and composition of the obtained samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectro­scopy (XPS), and thermogravimetric (TG) analysis. The detailed study of the electro­chemical properties of the composites as cathodes of aqueous zinc-ion battery was per­formed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) at different current densities and by electrochemical impedance spectroscopy (EIS). It was shown that V-120 demonstrated excellent electrochemical performance in the 0.3 to 1.4 V vs. Zn/Zn2+ potential range reaching specific capacities of up to 390 mA∙h∙g−1 at 0.3 A∙g−1 with excel­lent capacity stability after 1000 charge-discharge cycles. Its functional parameters were found to be much better than those of the electrodes based on the V-170 composite obtained at a higher temperature. The effect of the synthesis temperature on the electro­chemical properties is discussed in terms of the crystallographic, compositional, and thermogravimetric properties of the samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌离子电池用氧化钒-聚(3,4-乙烯二氧噻吩)阴极:合成温度的影响
采用微波辅助水热合成法,在120℃和170℃(分别记为V-120和V-170)条件下,一步合成了导电聚合物聚(3,4-乙烯二氧噻吩)氧化钒复合材料。通过扫描电镜(SEM)、x射线衍射(XRD)、x射线光电子能谱(XPS)和热重(TG)分析对所得样品的结构和组成进行了表征。采用循环伏安法(CV)、不同电流密度下恒流充放电法(GCD)和电化学阻抗谱法(EIS)对复合材料作为锌离子电池阴极的电化学性能进行了详细的研究。结果表明,V-120在0.3 ~ 1.4 V vs. Zn/Zn2+电位范围内表现出优异的电化学性能,在0.3 A∙g−1电压下比容量高达390 mA∙h∙g−1,且在1000次充放电循环后具有优异的容量稳定性。其功能参数明显优于高温下制备的V-170复合材料电极。从晶体学、成分学和热重学等方面讨论了合成温度对样品电化学性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
27.30%
发文量
90
审稿时长
6 weeks
期刊最新文献
Synthesis of graphene by electrochemical exfoliation from petroleum coke for electrochemical energy storage application Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water A model of chronoamperometry of a two electrons electro-deposition reaction with the adsorption of intermediate Computational materials discovery and development for Li and non-Li advanced battery chemistries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1