A High-Resolution Two-Step Time-to-Digital Conversion in 40 nm CMOS

Xiao Yun Chen, Lu Tang, Xuan Shen
{"title":"A High-Resolution Two-Step Time-to-Digital Conversion in 40 nm CMOS","authors":"Xiao Yun Chen, Lu Tang, Xuan Shen","doi":"10.1109/ICICM54364.2021.9660337","DOIUrl":null,"url":null,"abstract":"In this paper, a two-step Time-to-Digital converter (TDC) with a matching coarse-fine interface circuit for all-digital phase-locked loop (ADPLL) in a 40nm CMOS process is presented. A low-precision quantization architecture is used for the coarse stage of the designed two-step TDC to achieve wide dynamic range, and a high-precision quantization architecture is used for the fine stage to ensure higher resolution. A matching coarse-fine interface structure is proposed to reduce the transmission error. The simulation results show that the TDC can balance the performance of resolution, power consumption and dynamic range. The 32-level delay chain is used for the first-stage TDC with a quantization accuracy of 53. 8ps, and a 15-level delay chain with a quantization accuracy of 6. 2ps adopted in the second stage TDC. Under the condition that the reference frequency is 100MHz and its core chip size is $0.0431 mm^{2}$.","PeriodicalId":6693,"journal":{"name":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"19 1","pages":"189-192"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICM54364.2021.9660337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a two-step Time-to-Digital converter (TDC) with a matching coarse-fine interface circuit for all-digital phase-locked loop (ADPLL) in a 40nm CMOS process is presented. A low-precision quantization architecture is used for the coarse stage of the designed two-step TDC to achieve wide dynamic range, and a high-precision quantization architecture is used for the fine stage to ensure higher resolution. A matching coarse-fine interface structure is proposed to reduce the transmission error. The simulation results show that the TDC can balance the performance of resolution, power consumption and dynamic range. The 32-level delay chain is used for the first-stage TDC with a quantization accuracy of 53. 8ps, and a 15-level delay chain with a quantization accuracy of 6. 2ps adopted in the second stage TDC. Under the condition that the reference frequency is 100MHz and its core chip size is $0.0431 mm^{2}$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
40纳米CMOS的高分辨率两步时间-数字转换
本文提出了一种采用匹配粗-细接口电路的双步时间-数字转换器(TDC),用于40nm CMOS工艺的全数字锁相环(ADPLL)。设计的两步TDC粗阶采用低精度量化架构,以实现更宽的动态范围,而细阶采用高精度量化架构,以保证更高的分辨率。为了减小传输误差,提出了一种匹配的粗精界面结构。仿真结果表明,TDC能很好地平衡分辨率、功耗和动态范围的性能。第一级TDC采用32级延迟链,量化精度为53。8ps, 15级延时链,量化精度为6。第二阶段TDC采用2ps。在参考频率为100MHz,其核心芯片尺寸为0.0431 mm^{2}$的条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[ICICM 2021 Front cover] Power Amplifier of Two-stage MMIC with Filter and Antenna Design for Transmitter Applications Design of a 220GHz Frequency Quadrupler in 0.13 µ m SiGe Technology RF Front-End CMOS Receiver with Antenna for Millimeter-Wave Applications A Reinforcement Learning-based Online-training AI Controller for DC-DC Switching Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1