{"title":"Superconducting quantum metamaterial as photonic crystal","authors":"Z. Ivić, D. Chevizovich, Ž. Pržulj","doi":"10.1109/INFOTEH53737.2022.9751265","DOIUrl":null,"url":null,"abstract":"We study quantum features of electromagnetic radiation propagating in a waveguide built of an infinite array of super-conducting qubits (SCQ) placed within a resonator comprised of two massive superconductors. Such engineered media, so-called superconducting quantum metamaterials (SCQMM), have a great potential for quantum information processing and communications and devise a comprehensive study of the nature of the “light”-matter interaction. We predict the emergence of novel in-terference effects with possible practical applications. For exam-ple, photons may exhibit a nontrivial dispersion relation such as band edges and band gaps. In this way, QMMs may be viewed as photonic crystals. This, in turn, enriches their potential for practi-cal applications and provides novel means for devising compre-hensive studies of both practical and fundamental aspects of the interaction of artificial atoms and the EM field.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"34 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study quantum features of electromagnetic radiation propagating in a waveguide built of an infinite array of super-conducting qubits (SCQ) placed within a resonator comprised of two massive superconductors. Such engineered media, so-called superconducting quantum metamaterials (SCQMM), have a great potential for quantum information processing and communications and devise a comprehensive study of the nature of the “light”-matter interaction. We predict the emergence of novel in-terference effects with possible practical applications. For exam-ple, photons may exhibit a nontrivial dispersion relation such as band edges and band gaps. In this way, QMMs may be viewed as photonic crystals. This, in turn, enriches their potential for practi-cal applications and provides novel means for devising compre-hensive studies of both practical and fundamental aspects of the interaction of artificial atoms and the EM field.