The Use of Generalized Means in the Estimation of the Weibull Tail Coefficient

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2022-06-26 DOI:10.1155/2022/7290822
Frederico Caeiro, Lígia Henriques-Rodrigues, M. Ivette Gomes
{"title":"The Use of Generalized Means in the Estimation of the Weibull Tail Coefficient","authors":"Frederico Caeiro,&nbsp;Lígia Henriques-Rodrigues,&nbsp;M. Ivette Gomes","doi":"10.1155/2022/7290822","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Due to the specificity of the Weibull tail coefficient, most of the estimators available in the literature are based on the log excesses and are consequently quite similar to the estimators used for the estimation of a positive extreme value index. The interesting performance of estimators based on generalized means leads us to base the estimation of the Weibull tail coefficient on the power mean-of-order-<i>p</i>. Consistency and asymptotic normality of the estimators under study are put forward. Their performance for finite samples is illustrated through a Monte Carlo simulation. It is always possible to find a negative value of <i>p</i> (contrarily to what happens with the mean-of-order-<i>p</i> estimator for the extreme value index), such that, for adequate values of the threshold, there is a reduction in both bias and root mean square error.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/7290822","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/7290822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the specificity of the Weibull tail coefficient, most of the estimators available in the literature are based on the log excesses and are consequently quite similar to the estimators used for the estimation of a positive extreme value index. The interesting performance of estimators based on generalized means leads us to base the estimation of the Weibull tail coefficient on the power mean-of-order-p. Consistency and asymptotic normality of the estimators under study are put forward. Their performance for finite samples is illustrated through a Monte Carlo simulation. It is always possible to find a negative value of p (contrarily to what happens with the mean-of-order-p estimator for the extreme value index), such that, for adequate values of the threshold, there is a reduction in both bias and root mean square error.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义均值在威布尔尾系数估计中的应用
由于威布尔尾系数的特殊性,文献中可用的大多数估计量都是基于对数过量的,因此与用于估计正极值指标的估计量非常相似。基于广义均值的估计器的有趣性能使我们将威布尔尾系数的估计建立在阶- p的幂均值上。给出了所研究估计量的相合性和渐近正态性。通过蒙特卡罗模拟说明了它们在有限样本下的性能。总是有可能找到p的负值(与极值指数的均值- p估计器相反),这样,对于阈值的适当值,偏差和均方根误差都减少了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
On the Efficiency of the Newly Developed Composite Randomized Response Technique Approximate Solution of an Integrodifferential Equation Generalized by Harry Dym Equation Using the Picard Successive Method A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1