Multi-view Normal Field Integration for 3D Reconstruction of Mirroring Objects

Michael Weinmann, Aljosa Osep, R. Ruiters, R. Klein
{"title":"Multi-view Normal Field Integration for 3D Reconstruction of Mirroring Objects","authors":"Michael Weinmann, Aljosa Osep, R. Ruiters, R. Klein","doi":"10.1109/ICCV.2013.311","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel, robust multi-view normal field integration technique for reconstructing the full 3D shape of mirroring objects. We employ a turntable-based setup with several cameras and displays. These are used to display illumination patterns which are reflected by the object surface. The pattern information observed in the cameras enables the calculation of individual volumetric normal fields for each combination of camera, display and turntable angle. As the pattern information might be blurred depending on the surface curvature or due to non-perfect mirroring surface characteristics, we locally adapt the decoding to the finest still resolvable pattern resolution. In complex real-world scenarios, the normal fields contain regions without observations due to occlusions and outliers due to interreflections and noise. Therefore, a robust reconstruction using only normal information is challenging. Via a non-parametric clustering of normal hypotheses derived for each point in the scene, we obtain both the most likely local surface normal and a local surface consistency estimate. This information is utilized in an iterative min-cut based variational approach to reconstruct the surface geometry.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"9 1","pages":"2504-2511"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

In this paper, we present a novel, robust multi-view normal field integration technique for reconstructing the full 3D shape of mirroring objects. We employ a turntable-based setup with several cameras and displays. These are used to display illumination patterns which are reflected by the object surface. The pattern information observed in the cameras enables the calculation of individual volumetric normal fields for each combination of camera, display and turntable angle. As the pattern information might be blurred depending on the surface curvature or due to non-perfect mirroring surface characteristics, we locally adapt the decoding to the finest still resolvable pattern resolution. In complex real-world scenarios, the normal fields contain regions without observations due to occlusions and outliers due to interreflections and noise. Therefore, a robust reconstruction using only normal information is challenging. Via a non-parametric clustering of normal hypotheses derived for each point in the scene, we obtain both the most likely local surface normal and a local surface consistency estimate. This information is utilized in an iterative min-cut based variational approach to reconstruct the surface geometry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镜像对象三维重建的多视图法向场集成
在本文中,我们提出了一种新的,鲁棒的多视图法向场积分技术,用于重建镜像对象的完整三维形状。我们采用了一个基于转盘的设置,有几个摄像头和显示器。这些用于显示被物体表面反射的照明模式。在相机中观察到的模式信息可以计算每个相机、显示器和转盘角度组合的单个体积法向场。由于图案信息可能会因表面曲率或镜像表面特征不完美而模糊,因此我们局部调整解码以获得最佳的可分辨图案分辨率。在复杂的现实世界场景中,法向场包含由于遮挡和由于相互反射和噪声而产生的异常值而没有观测的区域。因此,仅使用正常信息进行鲁棒重建是具有挑战性的。通过对场景中每个点的正态假设进行非参数聚类,我们获得了最可能的局部表面法向和局部表面一致性估计。该信息被用于基于迭代最小切割的变分方法来重建表面几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1