Development of nanocellulose fiber reinforced starch biopolymer composites: a review

Q2 Physics and Astronomy Physical Sciences Reviews Pub Date : 2023-03-21 DOI:10.1515/psr-2022-0007
S. M. Sapuan, M. M. Harussani, Aleif Hakimi Ismail, Noorashikin Soh Zularifin Soh, Mohamad Irsyad Mohamad Azwardi, V. Siddiqui
{"title":"Development of nanocellulose fiber reinforced starch biopolymer composites: a review","authors":"S. M. Sapuan, M. M. Harussani, Aleif Hakimi Ismail, Noorashikin Soh Zularifin Soh, Mohamad Irsyad Mohamad Azwardi, V. Siddiqui","doi":"10.1515/psr-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract In the last few years, there are rising numbers for environmental waste due to factors such as plastic based food packaging that really need to get enough attention in order to prevent the issue from becoming worse and bringing disaster to society. Thus, the uses of plastic composite materials need to be reduced and need to be replaced with materials that are natural and have low degradation to preserve nature. Based on the statistics for the global, the production of plastic has been roughly calculated for passing 400 million metric tons every year and has a high probability of approaching the value of 500 million metric tons at the year of 2025 and this issue needs to be counteracted as soon as possible. Due to that, the increasing number for recent development of natural biopolymer, as an example starch, has been investigated as the substitution for the non-biodegradable biopolymer. Besides, among all biodegradable polymers, starch has been considered as promising substitution polymer due to its renewability, easy availability, and biodegradability. Apart from that, by the reinforcement from the nanocellulose, starch fiber has an increasing in terms of mechanical, barrier and thermal properties. In this review paper, we will be discussing the up-to-date development of nanocellulose fiber reinforced starch biopolymer composites throughout this century.","PeriodicalId":20156,"journal":{"name":"Physical Sciences Reviews","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/psr-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In the last few years, there are rising numbers for environmental waste due to factors such as plastic based food packaging that really need to get enough attention in order to prevent the issue from becoming worse and bringing disaster to society. Thus, the uses of plastic composite materials need to be reduced and need to be replaced with materials that are natural and have low degradation to preserve nature. Based on the statistics for the global, the production of plastic has been roughly calculated for passing 400 million metric tons every year and has a high probability of approaching the value of 500 million metric tons at the year of 2025 and this issue needs to be counteracted as soon as possible. Due to that, the increasing number for recent development of natural biopolymer, as an example starch, has been investigated as the substitution for the non-biodegradable biopolymer. Besides, among all biodegradable polymers, starch has been considered as promising substitution polymer due to its renewability, easy availability, and biodegradability. Apart from that, by the reinforcement from the nanocellulose, starch fiber has an increasing in terms of mechanical, barrier and thermal properties. In this review paper, we will be discussing the up-to-date development of nanocellulose fiber reinforced starch biopolymer composites throughout this century.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米纤维素纤维增强淀粉生物聚合物复合材料的研究进展
在过去的几年里,由于塑料食品包装等因素造成的环境浪费越来越多,为了防止问题变得更糟,给社会带来灾难,真的需要得到足够的重视。因此,需要减少塑料复合材料的使用,需要用天然的、低降解的材料来代替,以保护自然。根据对全球的统计,塑料的产量已经大致计算为每年超过4亿吨,到2025年很有可能接近5亿吨,这个问题需要尽快解决。因此,近年来越来越多的天然生物聚合物被开发出来,以淀粉为例,人们开始研究替代不可生物降解的生物聚合物。此外,在所有可生物降解聚合物中,淀粉因其可再生、易获得和生物降解性而被认为是有前途的替代聚合物。此外,通过纳米纤维素的增强,淀粉纤维的机械性能、阻隔性能和热性能都有所提高。本文综述了纳米纤维素纤维增强淀粉生物聚合物复合材料在本世纪的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Sciences Reviews
Physical Sciences Reviews MULTIDISCIPLINARY SCIENCES-
CiteScore
2.40
自引率
0.00%
发文量
173
期刊最新文献
Preparing new secondary science teachers in the context of sustainable development goals: green and sustainable chemistry A facile and efficient one-pot 3-component reaction (3-CR) method for the synthesis of thiazine-based heterocyclic compounds using zwitterion adduct intermediates The workshops on computational applications in secondary metabolite discovery (CAiSMD) Activated carbon-mediated adsorption of emerging contaminants Carbon metal nanoparticle composites for the removal of pollutants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1