K. Nakadai, M. Kumon, HIroshi G. Okuno, Kotaro Hoshiba, Mizuho Wakabayashi, Kai Washizaki, Takahiro Ishiki, D. Gabriel, Yoshiaki Bando, Takayuki Morito, Ryosuke Kojima, Osamu Sugiyama
{"title":"Development of microphone-array-embedded UAV for search and rescue task","authors":"K. Nakadai, M. Kumon, HIroshi G. Okuno, Kotaro Hoshiba, Mizuho Wakabayashi, Kai Washizaki, Takahiro Ishiki, D. Gabriel, Yoshiaki Bando, Takayuki Morito, Ryosuke Kojima, Osamu Sugiyama","doi":"10.1109/IROS.2017.8206494","DOIUrl":null,"url":null,"abstract":"This paper addresses online outdoor sound source localization using a microphone array embedded in an unmanned aerial vehicle (UAV). In addition to sound source localization, sound source enhancement and robust communication method are also described. This system is one instance of deployment of our continuously developing open source software for robot audition called HARK (Honda Research Institute Japan Audition for Robots with Kyoto University). To improve the robustness against outdoor acoustic noise, we propose to combine two sound source localization methods based on MUSIC (multiple signal classification) to cope with trade-off between latency and noise robustness. The standard Eigenvalue decomposition based MUSIC (SEVD-MUSIC) has smaller latency but less noise robustness, whereas the incremental generalized singular value decomposition based MUSIC (iGSVD-MUSIC) has higher noise robustness but larger latency. A UAV operator can use an appropriate method according to the situation. A sound enhancement method called online robust principal component analysis (ORPCA) enables the operator to detect a target sound source more easily. To improve the stability of wireless communication, and robustness of the UAV system against weather changes, we developed data compression based on free lossless audio codec (FLAC) extended to support a 16 ch audio data stream via UDP, and developed a water-resistant microphone array. The resulting system successfully worked in an outdoor search and rescue task in ImPACT Tough Robotics Challenge in November 2016.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"5985-5990"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
This paper addresses online outdoor sound source localization using a microphone array embedded in an unmanned aerial vehicle (UAV). In addition to sound source localization, sound source enhancement and robust communication method are also described. This system is one instance of deployment of our continuously developing open source software for robot audition called HARK (Honda Research Institute Japan Audition for Robots with Kyoto University). To improve the robustness against outdoor acoustic noise, we propose to combine two sound source localization methods based on MUSIC (multiple signal classification) to cope with trade-off between latency and noise robustness. The standard Eigenvalue decomposition based MUSIC (SEVD-MUSIC) has smaller latency but less noise robustness, whereas the incremental generalized singular value decomposition based MUSIC (iGSVD-MUSIC) has higher noise robustness but larger latency. A UAV operator can use an appropriate method according to the situation. A sound enhancement method called online robust principal component analysis (ORPCA) enables the operator to detect a target sound source more easily. To improve the stability of wireless communication, and robustness of the UAV system against weather changes, we developed data compression based on free lossless audio codec (FLAC) extended to support a 16 ch audio data stream via UDP, and developed a water-resistant microphone array. The resulting system successfully worked in an outdoor search and rescue task in ImPACT Tough Robotics Challenge in November 2016.