Development of microphone-array-embedded UAV for search and rescue task

K. Nakadai, M. Kumon, HIroshi G. Okuno, Kotaro Hoshiba, Mizuho Wakabayashi, Kai Washizaki, Takahiro Ishiki, D. Gabriel, Yoshiaki Bando, Takayuki Morito, Ryosuke Kojima, Osamu Sugiyama
{"title":"Development of microphone-array-embedded UAV for search and rescue task","authors":"K. Nakadai, M. Kumon, HIroshi G. Okuno, Kotaro Hoshiba, Mizuho Wakabayashi, Kai Washizaki, Takahiro Ishiki, D. Gabriel, Yoshiaki Bando, Takayuki Morito, Ryosuke Kojima, Osamu Sugiyama","doi":"10.1109/IROS.2017.8206494","DOIUrl":null,"url":null,"abstract":"This paper addresses online outdoor sound source localization using a microphone array embedded in an unmanned aerial vehicle (UAV). In addition to sound source localization, sound source enhancement and robust communication method are also described. This system is one instance of deployment of our continuously developing open source software for robot audition called HARK (Honda Research Institute Japan Audition for Robots with Kyoto University). To improve the robustness against outdoor acoustic noise, we propose to combine two sound source localization methods based on MUSIC (multiple signal classification) to cope with trade-off between latency and noise robustness. The standard Eigenvalue decomposition based MUSIC (SEVD-MUSIC) has smaller latency but less noise robustness, whereas the incremental generalized singular value decomposition based MUSIC (iGSVD-MUSIC) has higher noise robustness but larger latency. A UAV operator can use an appropriate method according to the situation. A sound enhancement method called online robust principal component analysis (ORPCA) enables the operator to detect a target sound source more easily. To improve the stability of wireless communication, and robustness of the UAV system against weather changes, we developed data compression based on free lossless audio codec (FLAC) extended to support a 16 ch audio data stream via UDP, and developed a water-resistant microphone array. The resulting system successfully worked in an outdoor search and rescue task in ImPACT Tough Robotics Challenge in November 2016.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"5985-5990"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper addresses online outdoor sound source localization using a microphone array embedded in an unmanned aerial vehicle (UAV). In addition to sound source localization, sound source enhancement and robust communication method are also described. This system is one instance of deployment of our continuously developing open source software for robot audition called HARK (Honda Research Institute Japan Audition for Robots with Kyoto University). To improve the robustness against outdoor acoustic noise, we propose to combine two sound source localization methods based on MUSIC (multiple signal classification) to cope with trade-off between latency and noise robustness. The standard Eigenvalue decomposition based MUSIC (SEVD-MUSIC) has smaller latency but less noise robustness, whereas the incremental generalized singular value decomposition based MUSIC (iGSVD-MUSIC) has higher noise robustness but larger latency. A UAV operator can use an appropriate method according to the situation. A sound enhancement method called online robust principal component analysis (ORPCA) enables the operator to detect a target sound source more easily. To improve the stability of wireless communication, and robustness of the UAV system against weather changes, we developed data compression based on free lossless audio codec (FLAC) extended to support a 16 ch audio data stream via UDP, and developed a water-resistant microphone array. The resulting system successfully worked in an outdoor search and rescue task in ImPACT Tough Robotics Challenge in November 2016.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于搜救任务的嵌入式麦克风阵列无人机的研制
本文研究了利用嵌入在无人机中的麦克风阵列进行在线室外声源定位的方法。除了声源定位之外,还描述了声源增强和鲁棒通信方法。该系统是我们不断开发的机器人试听开源软件HARK(与京都大学合作的日本本田研究所机器人试听)的一个部署实例。为了提高对室外噪声的鲁棒性,我们提出结合两种基于MUSIC(多信号分类)的声源定位方法来处理延迟和噪声鲁棒性之间的权衡。基于标准特征值分解的MUSIC (SEVD-MUSIC)具有较小的延迟,但噪声鲁棒性较差,而基于增量广义奇异值分解的MUSIC (iGSVD-MUSIC)具有较高的噪声鲁棒性,但延迟较大。无人机操作员可以根据情况使用适当的方法。一种名为在线鲁棒主成分分析(ORPCA)的声音增强方法使操作员能够更容易地检测到目标声源。为了提高无线通信的稳定性和无人机系统对天气变化的鲁棒性,我们开发了基于自由无损音频编解码器(FLAC)的数据压缩,扩展到通过UDP支持16 ch音频数据流,并开发了一个防水麦克风阵列。该系统在2016年11月ImPACT Tough Robotics Challenge的户外搜索和救援任务中成功运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct visual SLAM fusing proprioception for a humanoid robot Upper limb motion intent recognition using tactile sensing Soft fluidic rotary actuator with improved actuation properties Underwater 3D structures as semantic landmarks in SONAR mapping Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1