Composable and versatile privacy via truncated CDP

Mark Bun, C. Dwork, G. Rothblum, T. Steinke
{"title":"Composable and versatile privacy via truncated CDP","authors":"Mark Bun, C. Dwork, G. Rothblum, T. Steinke","doi":"10.1145/3188745.3188946","DOIUrl":null,"url":null,"abstract":"We propose truncated concentrated differential privacy (tCDP), a refinement of differential privacy and of concentrated differential privacy. This new definition provides robust and efficient composition guarantees, supports powerful algorithmic techniques such as privacy amplification via sub-sampling, and enables more accurate statistical analyses. In particular, we show a central task for which the new definition enables exponential accuracy improvement.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

Abstract

We propose truncated concentrated differential privacy (tCDP), a refinement of differential privacy and of concentrated differential privacy. This new definition provides robust and efficient composition guarantees, supports powerful algorithmic techniques such as privacy amplification via sub-sampling, and enables more accurate statistical analyses. In particular, we show a central task for which the new definition enables exponential accuracy improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可组合和通用的隐私通过截断CDP
我们提出了截断集中差分隐私(tCDP),它是差分隐私和集中差分隐私的一种改进。这个新定义提供了健壮和高效的组成保证,支持强大的算法技术,如通过子采样进行隐私放大,并实现更准确的统计分析。特别是,我们展示了一个中心任务,新定义使指数精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1