{"title":"Modeling Complex Contacts Involving Deformable Objects for Haptic and Graphic Rendering","authors":"Qi Luo, J. Xiao","doi":"10.15607/RSS.2005.I.021","DOIUrl":null,"url":null,"abstract":"Haptic rendering involving deformable objects has seen many applications, from surgical simulation and training, to virtual prototyping, to teleoperation, etc. High quality rendering demands both physical fidelity and real-time performance, which are often conflicting requirements. In this paper, we simulate contact force between a held rigid body and an elastic object and the corresponding shape deformation of the elastic object efficiently and realistically based on a nonlinear physical model and a novel beam-skeleton model, taking into account friction, compliant motion, and multiple contact regions. Our approach is able to achieve a combined update rate of over 1 kHz in realistic, smooth, and stable rendering, as demonstrated by our implemented examples.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"81 10 1","pages":"153-160"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Haptic rendering involving deformable objects has seen many applications, from surgical simulation and training, to virtual prototyping, to teleoperation, etc. High quality rendering demands both physical fidelity and real-time performance, which are often conflicting requirements. In this paper, we simulate contact force between a held rigid body and an elastic object and the corresponding shape deformation of the elastic object efficiently and realistically based on a nonlinear physical model and a novel beam-skeleton model, taking into account friction, compliant motion, and multiple contact regions. Our approach is able to achieve a combined update rate of over 1 kHz in realistic, smooth, and stable rendering, as demonstrated by our implemented examples.