A Multi-Modal Dataset for Hate Speech Detection on Social Media: Case-study of Russia-Ukraine Conflict

Surendrabikram Thapa, Aditya Shah, F. Jafri, Usman Naseem, Imran Razzak
{"title":"A Multi-Modal Dataset for Hate Speech Detection on Social Media: Case-study of Russia-Ukraine Conflict","authors":"Surendrabikram Thapa, Aditya Shah, F. Jafri, Usman Naseem, Imran Razzak","doi":"10.18653/v1/2022.case-1.1","DOIUrl":null,"url":null,"abstract":"This paper presents a new multi-modal dataset for identifying hateful content on social media, consisting of 5,680 text-image pairs collected from Twitter, labeled across two labels. Experimental analysis of the presented dataset has shown that understanding both modalities is essential for detecting these techniques. It is confirmed in our experiments with several state-of-the-art multi-modal models. In future work, we plan to extend the dataset in size. We further plan to develop new multi-modal models tailored explicitly to hate-speech detection, aiming for a deeper understanding of the text and image relation. It would also be interesting to perform experiments in a direction that explores what social entities the given hate speech tweet targets.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"5 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents a new multi-modal dataset for identifying hateful content on social media, consisting of 5,680 text-image pairs collected from Twitter, labeled across two labels. Experimental analysis of the presented dataset has shown that understanding both modalities is essential for detecting these techniques. It is confirmed in our experiments with several state-of-the-art multi-modal models. In future work, we plan to extend the dataset in size. We further plan to develop new multi-modal models tailored explicitly to hate-speech detection, aiming for a deeper understanding of the text and image relation. It would also be interesting to perform experiments in a direction that explores what social entities the given hate speech tweet targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体上仇恨言论检测的多模态数据集:以俄乌冲突为例
本文提出了一个新的多模态数据集,用于识别社交媒体上的仇恨内容,该数据集由从Twitter收集的5680对文本图像组成,分为两个标签。对数据集的实验分析表明,理解这两种模式对于检测这些技术至关重要。我们用几个最先进的多模态模型进行了实验,证实了这一点。在未来的工作中,我们计划扩展数据集的大小。我们进一步计划开发专门针对仇恨言论检测的新多模态模型,旨在更深入地理解文本和图像的关系。在探索特定仇恨言论推特针对哪些社会实体的方向上进行实验也会很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drivers and scorecards to improve hypertension control in primary care practice: Recommendations from the HEARTS in the Americas Innovation Group. NLP4ITF @ Causal News Corpus 2022: Leveraging Linguistic Information for Event Causality Classification SPOCK @ Causal News Corpus 2022: Cause-Effect-Signal Span Detection Using Span-Based and Sequence Tagging Models CEIA-NLP at CASE 2022 Task 1: Protest News Detection for Portuguese Point cloud extraction of aircraft skin butt joint based on adaptive matching calibration algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1