{"title":"Modelling and Experimental Validation of a Controllable Energy Harvester for Pressure Regulation","authors":"Y. Ko, Shi M. Yu, A. Bilton","doi":"10.1115/imece2019-11514","DOIUrl":null,"url":null,"abstract":"\n A pico-scale Francis turbine (or energy harvester) was designed, fabricated and tested for pressure regulation and power generation application. The prototype energy harvester contains pivotable guide vanes and a controllable load to change the runner speed. This allows the simultaneous variation of the pressure drop and the output power. A computational fluid dynamics (CFD) model of the turbine was developed in ANSYS CFX 18.1 to evaluate the turbine’s sensitivity to geometric parameters such as the clearance gap size of the guide vane and its modularity. In conjunction to the CFD model, the electric generator’s characteristics were used to predict the turbine performance at varying guide vane angles. The turbine was prototyped and tested using a custom-built experimental set-up. The pico-scale turbine, with a runner diameter of 1.42 inches, was able to output up to 100 W of electrical power at its rated flowrate of 29 GPM. By varying the guide vane angles, the pressure drop and the hydraulic efficiency varied between 3–22 psi and up to 60% respectively. When validated against the experimental results, the CFD model showed a good agreement despite its low computational cost. The energy harvester’s initial characteristics demonstrate its potential as a game changer in the control valve market.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A pico-scale Francis turbine (or energy harvester) was designed, fabricated and tested for pressure regulation and power generation application. The prototype energy harvester contains pivotable guide vanes and a controllable load to change the runner speed. This allows the simultaneous variation of the pressure drop and the output power. A computational fluid dynamics (CFD) model of the turbine was developed in ANSYS CFX 18.1 to evaluate the turbine’s sensitivity to geometric parameters such as the clearance gap size of the guide vane and its modularity. In conjunction to the CFD model, the electric generator’s characteristics were used to predict the turbine performance at varying guide vane angles. The turbine was prototyped and tested using a custom-built experimental set-up. The pico-scale turbine, with a runner diameter of 1.42 inches, was able to output up to 100 W of electrical power at its rated flowrate of 29 GPM. By varying the guide vane angles, the pressure drop and the hydraulic efficiency varied between 3–22 psi and up to 60% respectively. When validated against the experimental results, the CFD model showed a good agreement despite its low computational cost. The energy harvester’s initial characteristics demonstrate its potential as a game changer in the control valve market.