Research on Formation Mechanism and Suppression Method of Surface Force Caused by Pump Jet Propeller

Y. Zhang, Dazhuan Wu
{"title":"Research on Formation Mechanism and Suppression Method of Surface Force Caused by Pump Jet Propeller","authors":"Y. Zhang, Dazhuan Wu","doi":"10.1115/fedsm2021-65423","DOIUrl":null,"url":null,"abstract":"\n Propeller exciting force is divided into bearing force and surface force according to the transfer path, and they are essential for radiated noise of the underwater vehicle. Surface force is an increasingly important issue in radiated noise because of the appearance of guide vanes and ducts. But the related questions about surface force are not thoroughly considered. Here we show spectral characteristics of surface force and its formation mechanism. Computational Fluid Dynamics is used in this paper. One of the important results is that there is a significant blade passing frequency (BPF) line spectrum in the radial component of surface force which does not appear in the axial direction; Another one is that the frequency amplitude at BPF of the duct is ten times that of the stator blades, which shows that the duct mainly contributes to the surface force. We also found that the amplitude of the duct surface force is equivalent to the rotor bearing force, which illustrates the importance of surface force research. It is demonstrated that the tip leakage vortex is the reason for the duct surface force by the analysis of the flow field. By adjusting the size of the tip clearance to control the tip leakage vortex, we found that the uniformity of the flow field has a significant effect on the surface force of the duct. The result obtained by this study can be used to reduce the radiated noise of underwater vehicles.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Propeller exciting force is divided into bearing force and surface force according to the transfer path, and they are essential for radiated noise of the underwater vehicle. Surface force is an increasingly important issue in radiated noise because of the appearance of guide vanes and ducts. But the related questions about surface force are not thoroughly considered. Here we show spectral characteristics of surface force and its formation mechanism. Computational Fluid Dynamics is used in this paper. One of the important results is that there is a significant blade passing frequency (BPF) line spectrum in the radial component of surface force which does not appear in the axial direction; Another one is that the frequency amplitude at BPF of the duct is ten times that of the stator blades, which shows that the duct mainly contributes to the surface force. We also found that the amplitude of the duct surface force is equivalent to the rotor bearing force, which illustrates the importance of surface force research. It is demonstrated that the tip leakage vortex is the reason for the duct surface force by the analysis of the flow field. By adjusting the size of the tip clearance to control the tip leakage vortex, we found that the uniformity of the flow field has a significant effect on the surface force of the duct. The result obtained by this study can be used to reduce the radiated noise of underwater vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泵喷螺旋桨表面力的形成机理及抑制方法研究
螺旋桨激励力根据传递路径分为轴承力和表面力,它们对水下航行器的辐射噪声是必不可少的。由于导叶和导管的出现,表面力在辐射噪声中越来越重要。但是,关于水面力的相关问题没有得到充分的考虑。本文给出了表面力的光谱特征及其形成机理。本文采用计算流体力学方法。其中一个重要的结果是,在表面力的径向分量中存在显著的叶片通过频率线谱,而在轴向分量中不存在;另一个是风道在BPF处的频率幅值是静叶的10倍,说明风道对表面力的贡献主要来自于风道。我们还发现,风管表面力的振幅相当于转子轴承力,这说明了表面力研究的重要性。通过流场分析,论证了叶尖泄漏涡是造成导管表面受力的原因。通过调整叶尖间隙的大小来控制叶尖泄漏涡,我们发现流场的均匀性对导管的表面力有显著的影响。研究结果可用于降低水下航行器的辐射噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Dynamics and Contact Stress on Hard Sealing Surface Analysis of LNG Cryogenic Ball Valve 0D Modeling of Fuel Tank for Vapor Generation Impact of Urban Microclimate on Air Conditioning Energy Consumption Using Different Convective Heat Transfer Coefficient Correlations Available in Building Energy Simulation Tools Study on Overall Design of a Vertical Take-Off and Landing Unmanned Aerial Vehicle Powered by Electric Ducted Fans Influence of the Topological Structures of the Nose of High-Speed Maglev Train on Aerodynamic Performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1