Electrolyte design principles for low-temperature lithium-ion batteries

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-08-05 DOI:10.1016/j.esci.2023.100170
Yang Yang , Wuhai Yang , Huijun Yang , Haoshen Zhou
{"title":"Electrolyte design principles for low-temperature lithium-ion batteries","authors":"Yang Yang ,&nbsp;Wuhai Yang ,&nbsp;Huijun Yang ,&nbsp;Haoshen Zhou","doi":"10.1016/j.esci.2023.100170","DOIUrl":null,"url":null,"abstract":"<div><p>Alongside the pursuit of high energy density and long service life, the urgent demand for low-temperature performance remains a long-standing challenge for a wide range of Li-ion battery applications, such as electric vehicles, portable electronics, large-scale grid systems, and special space/seabed/military purposes. Current Li-ion batteries suffer a major loss of capacity and power and fail to operate normally when the temperature decreases to −20 ​°C. This deterioration is mainly attributed to poor Li-ion transport in a bulk carbonated ester electrolyte and its derived solid–electrolyte interphase (SEI). In this mini-review discussing the limiting factors in the Li-ion diffusion process, we propose three basic requirements when formulating electrolytes for low-temperature Li-ion batteries: low melting point, poor Li<sup>+</sup> affinity, and a favorable SEI. Then, we briefly review emerging progress, including liquefied gas electrolytes, weakly solvating electrolytes, and localized high-concentration electrolytes. The proposed novel electrolytes effectively improve the reaction kinetics via accelerating Li-ion diffusion in the bulk electrolyte and interphase. The final part of the paper addresses future challenges and offers perspectives on electrolyte designs for low-temperature Li-ion batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 6","pages":"Article 100170"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001088/pdfft?md5=2a9cb18eafae7ba56d576649e19d3e1e&pid=1-s2.0-S2667141723001088-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 6

Abstract

Alongside the pursuit of high energy density and long service life, the urgent demand for low-temperature performance remains a long-standing challenge for a wide range of Li-ion battery applications, such as electric vehicles, portable electronics, large-scale grid systems, and special space/seabed/military purposes. Current Li-ion batteries suffer a major loss of capacity and power and fail to operate normally when the temperature decreases to −20 ​°C. This deterioration is mainly attributed to poor Li-ion transport in a bulk carbonated ester electrolyte and its derived solid–electrolyte interphase (SEI). In this mini-review discussing the limiting factors in the Li-ion diffusion process, we propose three basic requirements when formulating electrolytes for low-temperature Li-ion batteries: low melting point, poor Li+ affinity, and a favorable SEI. Then, we briefly review emerging progress, including liquefied gas electrolytes, weakly solvating electrolytes, and localized high-concentration electrolytes. The proposed novel electrolytes effectively improve the reaction kinetics via accelerating Li-ion diffusion in the bulk electrolyte and interphase. The final part of the paper addresses future challenges and offers perspectives on electrolyte designs for low-temperature Li-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温锂离子电池电解液设计原则
除了追求高能量密度和长使用寿命外,对低温性能的迫切需求仍然是锂离子电池广泛应用的长期挑战,例如电动汽车,便携式电子产品,大型电网系统以及特殊空间/海底/军事用途。当前的锂离子电池在温度降至- 20℃时,容量和功率损失较大,无法正常工作。这种恶化主要是由于锂离子在大块碳酸酯电解质及其衍生的固体电解质间相(SEI)中传输不良。在这篇讨论锂离子扩散过程限制因素的小型综述中,我们提出了配制低温锂离子电池电解质的三个基本要求:低熔点、低Li+亲和力和良好的SEI。然后,我们简要地回顾了新兴的进展,包括液化气电解质、弱溶剂化电解质和局部高浓度电解质。新型电解质通过加速锂离子在整体电解质和界面中的扩散,有效改善了反应动力学。论文的最后一部分解决了未来的挑战,并提供了低温锂离子电池电解质设计的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1