Acceptable intersystem interference probability distribution between adjacent terrestrial and satellite networks operating above 10 GHz

A. Panagopoulos, T. Kritikos, J. Kanellopoulos
{"title":"Acceptable intersystem interference probability distribution between adjacent terrestrial and satellite networks operating above 10 GHz","authors":"A. Panagopoulos, T. Kritikos, J. Kanellopoulos","doi":"10.3233/SC-130016","DOIUrl":null,"url":null,"abstract":"The present paper studies, interference issues arising from, the spectral and spatial coexistence between terrestrial stations participating in fixed wireless networks or in a point-to-point link and satellite terminals belonging to a satellite communication network, operating at frequencies above 10 GHz. Rain attenuation is considered to be the dominant fading mechanism at this frequency range. The acceptable intersystem interference probability AIIP of the carrier-to-interference ratio CIR of a terrestrial station interfered by a satellite is defined and analytically calculated. Adaptive power control schemes are assumed to operate for both networks. The correlated propagation fading phenomena over multiple terrestrial and slant paths are accurately incorporated. The proposed model is physical and can be applied on a global scale since incorporates properly the local climatic conditions concerning the point rainfall rate and the spatial rainfall inhomogeneity. Useful numerical results of the present model are finally provided and the impact of various crucial operational and geometrical parameters of satellite and fixed wireless networks' coexistence is also examined.","PeriodicalId":51158,"journal":{"name":"Space Communications","volume":"1 1","pages":"205-212"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SC-130016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper studies, interference issues arising from, the spectral and spatial coexistence between terrestrial stations participating in fixed wireless networks or in a point-to-point link and satellite terminals belonging to a satellite communication network, operating at frequencies above 10 GHz. Rain attenuation is considered to be the dominant fading mechanism at this frequency range. The acceptable intersystem interference probability AIIP of the carrier-to-interference ratio CIR of a terrestrial station interfered by a satellite is defined and analytically calculated. Adaptive power control schemes are assumed to operate for both networks. The correlated propagation fading phenomena over multiple terrestrial and slant paths are accurately incorporated. The proposed model is physical and can be applied on a global scale since incorporates properly the local climatic conditions concerning the point rainfall rate and the spatial rainfall inhomogeneity. Useful numerical results of the present model are finally provided and the impact of various crucial operational and geometrical parameters of satellite and fixed wireless networks' coexistence is also examined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相邻地面和卫星网络之间可接受的系统间干扰概率分布
本文件研究参与固定无线网络或点对点链路的地面站与属于卫星通信网络的卫星终端之间频谱和空间共存所产生的干扰问题,频率在10千兆赫以上。降雨衰减被认为是该频率范围内的主要衰落机制。定义了受卫星干扰的地面站载波干扰比CIR的可接受系统间干扰概率AIIP,并进行了解析计算。假设自适应功率控制方案适用于两个网络。在多个地面和倾斜路径上的相关传播衰落现象被精确地合并。所提出的模式是物理的,可以在全球范围内应用,因为它适当地结合了有关点降雨率和空间降雨不均匀性的局部气候条件。最后给出了该模型的有用数值结果,并分析了卫星和固定无线网络共存的各种关键操作参数和几何参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Space Communications
Space Communications 工程技术-电信学
自引率
0.00%
发文量
0
期刊最新文献
Introduction to the special issue of Space Communication Journal on the ESA Workshop on radiowave propagation - 2011 Presentation of the analysis tool for design of onboard reconfigurable antenna for broadband SatCom and broadcast services Overview of a more simplified new channel model to synthesize total attenuation time series for satellite communication systems at Ka and Q/V bands Joint results of long-term earth-space propagation experiments at 20-GHz in Canada and Europe An enhanced narrowband statistical land mobile satellite channel model for the S- and C-Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1