GDI failure mechanism investigation and improvement in HK process

Lingxiao Cheng, Lijuan Yang, Kai Wang
{"title":"GDI failure mechanism investigation and improvement in HK process","authors":"Lingxiao Cheng, Lijuan Yang, Kai Wang","doi":"10.1109/CSTIC.2017.7919828","DOIUrl":null,"url":null,"abstract":"Scaling down the complementary metal oxide semiconductor field effect transistors (COMS FET) requires involvement of High K (HK) metal gate technology in sub 45nm nodes. HK enables significant lower leakage at similar effective oxide thickness (EOT) to SiO2 by effective suppression of direct tunneling. However, stress induced leakage current (SILC) and defects in the ultrathin interlayer in HK stack have been causing severe reliability concerns. In this work, we analyzed the gate dielectric integrity (GDI) performance in 28nm High K metal gate (HKMG) process with Vramp test and discussed the root cause of SILC and Vramp failure. Based on our experiments, we proposed an optimized process, which employs post deposition anneals (PDA) and decoupled plasma nitridation (DPN) process to passivate bulk trap in bulk HK to improve SILC. In-situ steam generation (ISSG) oxide and physical vapor deposition (PVD) TiN work function layer are also main contributors to improve GDI performance.","PeriodicalId":6846,"journal":{"name":"2017 China Semiconductor Technology International Conference (CSTIC)","volume":"2 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2017.7919828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scaling down the complementary metal oxide semiconductor field effect transistors (COMS FET) requires involvement of High K (HK) metal gate technology in sub 45nm nodes. HK enables significant lower leakage at similar effective oxide thickness (EOT) to SiO2 by effective suppression of direct tunneling. However, stress induced leakage current (SILC) and defects in the ultrathin interlayer in HK stack have been causing severe reliability concerns. In this work, we analyzed the gate dielectric integrity (GDI) performance in 28nm High K metal gate (HKMG) process with Vramp test and discussed the root cause of SILC and Vramp failure. Based on our experiments, we proposed an optimized process, which employs post deposition anneals (PDA) and decoupled plasma nitridation (DPN) process to passivate bulk trap in bulk HK to improve SILC. In-situ steam generation (ISSG) oxide and physical vapor deposition (PVD) TiN work function layer are also main contributors to improve GDI performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HK工艺GDI失效机理调查及改进
缩小互补金属氧化物半导体场效应晶体管(COMS FET)需要在45纳米以下节点采用高K (HK)金属栅极技术。通过有效抑制直接隧穿,HK在与SiO2相似的有效氧化物厚度(EOT)下可以显著降低泄漏。然而,应力诱发漏电流(SILC)和超薄层间的缺陷已经引起了严重的可靠性问题。本文通过Vramp测试,分析了28nm高K金属栅极(HKMG)工艺的栅极介电完整性(GDI)性能,并讨论了SILC和Vramp失效的根本原因。在实验的基础上,我们提出了一种优化的工艺,采用沉积后退火(PDA)和去耦等离子体氮化(DPN)工艺钝化块状HK中的块状阱,以提高SILC。原位蒸汽生成(ISSG)氧化物和物理气相沉积(PVD) TiN功功能层也是提高GDI性能的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wafer size MOS2 with few monolayer synthesized by H2S sulfurization A fast and low-cost TSV/TGV filling method Finger print sensor molding thickness none destructive measurement with Terahertz technology Research of SMO process to improve the imaging capability of lithography system for 28nm node and beyond The study on the moldability and reliability of epoxy molding compound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1