Cost Optimized Non-Contacting Experimental Modal Analysis Using a Smartphone

IF 0.9 Q4 ACOUSTICS Sound and Vibration Pub Date : 2020-01-01 DOI:10.32604/sv.2020.011513
J. Hallal, M. Hammoud, M. Fakih, A. Hallal
{"title":"Cost Optimized Non-Contacting Experimental Modal Analysis Using a\nSmartphone","authors":"J. Hallal, M. Hammoud, M. Fakih, A. Hallal","doi":"10.32604/sv.2020.011513","DOIUrl":null,"url":null,"abstract":"The vibrations behavior analysis is an essential step in the mechanical design process. Several methods such as analytical modelling, numerical analysis and experimental measurements can be used for this purpose. However, the numerical or analytical models should be validated through experimental measurements, usually expensive. This paper introduces an inexpensive smartphone as an accurate, non-intrusive vibrations’ behavior measurement device. An experimental measurement procedure based on the video processing method is presented. This procedure allows the measurement of the natural frequencies and the mode shapes of a vibrating structure, simply by using a smartphone built-in camera. The experimental results are compared to those obtained using an accurate analytical model, where the natural frequencies error is less than 2.7% and the modal assurance criterion is higher than 0.89. In order to highlight the obtained results, a comparison has been done using a high quality and high frame per second (fps) camera-based measurement of material properties. Since the highest recovered natural frequency and its associated mode shape depend on the frame per second rate of the recorded video, this procedure has great potential in low frequencies problems such as for big structures like buildings and bridges. This validated technique re-introduces the personal smartphone as an accurate inexpensive non-contacting vibration measurement tool.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/sv.2020.011513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

The vibrations behavior analysis is an essential step in the mechanical design process. Several methods such as analytical modelling, numerical analysis and experimental measurements can be used for this purpose. However, the numerical or analytical models should be validated through experimental measurements, usually expensive. This paper introduces an inexpensive smartphone as an accurate, non-intrusive vibrations’ behavior measurement device. An experimental measurement procedure based on the video processing method is presented. This procedure allows the measurement of the natural frequencies and the mode shapes of a vibrating structure, simply by using a smartphone built-in camera. The experimental results are compared to those obtained using an accurate analytical model, where the natural frequencies error is less than 2.7% and the modal assurance criterion is higher than 0.89. In order to highlight the obtained results, a comparison has been done using a high quality and high frame per second (fps) camera-based measurement of material properties. Since the highest recovered natural frequency and its associated mode shape depend on the frame per second rate of the recorded video, this procedure has great potential in low frequencies problems such as for big structures like buildings and bridges. This validated technique re-introduces the personal smartphone as an accurate inexpensive non-contacting vibration measurement tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于智能手机的成本优化非接触实验模态分析
振动特性分析是机械设计过程中必不可少的一步。分析建模、数值分析和实验测量等几种方法可用于此目的。然而,数值或分析模型应该通过实验测量来验证,通常是昂贵的。本文介绍了一种廉价的智能手机作为一种精确的、非侵入式的振动行为测量设备。提出了一种基于视频处理方法的实验测量方法。这个程序允许测量振动结构的固有频率和模态振型,只需使用智能手机内置的摄像头。实验结果与采用精确解析模型得到的结果进行了比较,其中固有频率误差小于2.7%,模态保证准则大于0.89。为了突出所获得的结果,使用基于高质量和高帧每秒(fps)相机的材料特性测量进行了比较。由于恢复的最高固有频率及其相关模态振型取决于录制视频的每秒帧率,因此该程序在低频问题(如建筑物和桥梁等大型结构)中具有很大的潜力。这种经过验证的技术重新引入了个人智能手机作为一种准确、廉价的非接触式振动测量工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sound and Vibration
Sound and Vibration 物理-工程:机械
CiteScore
1.50
自引率
33.30%
发文量
33
审稿时长
>12 weeks
期刊介绍: Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications. Papers are sought that contribute to the following general topics: -broad-based interests in noise and vibration- dynamic measurements- structural analysis- computer-aided engineering- machinery reliability- dynamic testing
期刊最新文献
Multi-Objective Prediction and Optimization of Vehicle Acoustic Package Based on ResNet Neural Network Research on Human-Vehicle-Road Friendliness Based on Improved SH-GH-ADD Control Introduction to the Special Issue on Perspectives on Soundscape and Challenges of Noise Pollution: A Multidisciplinary Approach to Sustainable Environmental Solutions Damped Mathieu Equation with a Modulation Property of the Homotopy Perturbation Method A Complete Analysis of Clarity (C50) Using I-SIMPA to Maintain Ideal Conditions in an Acoustic Chamber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1