{"title":"Anionic clay surface facilitates electron transfer between an excited donor encapsulated within a cationic capsule and a cationic electron acceptor","authors":"Natsuki Morita , A. Mohan Raj , Takuya Fujimura , Tetsuya Shimada , Vaidhyanathan Ramamurthy , Shinsuke Takagi","doi":"10.1016/j.jpap.2023.100204","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescence quenching of an excited guest encapsulated within a cationic host by a cationic molecule was examined on an anionic inorganic surface. Repulsion between the host and the quencher was overcome by adsorbing both an anionic surface. Dimethyl stilbene (DMS), octa amine (OAm<sub>2</sub><sup>16+</sup>), viologen derivatives (VD<sup>2+</sup>) and saponite are used as guest, cationic capsule, cationic electron acceptor and anionic inorganic surface, respectively. The fluorescence behavior of DMS within OAm<sub>2</sub><sup>16+</sup> (denoted as DMS@OAm<sub>2</sub><sup>16+</sup>) was observed by steady-state and time-resolved fluorescence measurements. As a result of electron transfer the fluorescence of DMS@OAm<sub>2</sub><sup>16+</sup> was quenched by VD<sup>2+</sup> under the presence of saponite, while no quenching was observed in the absence of saponite. Those results indicate that the dynamic electron transfer between DMS@OAm<sub>2</sub><sup>16+</sup> and VD<sup>2+</sup> which are electrostatically repulsive, can be observed in the (DMS@OAm<sub>2</sub><sup>16+</sup>)-VD<sup>2+</sup>-saponite triad supramolecular system where the two cationic systems are brought closer by the anionic clay sheet.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"17 ","pages":"Article 100204"},"PeriodicalIF":3.2610,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666469023000453/pdfft?md5=b854b3671fbb856911fab5097706ed8c&pid=1-s2.0-S2666469023000453-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469023000453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence quenching of an excited guest encapsulated within a cationic host by a cationic molecule was examined on an anionic inorganic surface. Repulsion between the host and the quencher was overcome by adsorbing both an anionic surface. Dimethyl stilbene (DMS), octa amine (OAm216+), viologen derivatives (VD2+) and saponite are used as guest, cationic capsule, cationic electron acceptor and anionic inorganic surface, respectively. The fluorescence behavior of DMS within OAm216+ (denoted as DMS@OAm216+) was observed by steady-state and time-resolved fluorescence measurements. As a result of electron transfer the fluorescence of DMS@OAm216+ was quenched by VD2+ under the presence of saponite, while no quenching was observed in the absence of saponite. Those results indicate that the dynamic electron transfer between DMS@OAm216+ and VD2+ which are electrostatically repulsive, can be observed in the (DMS@OAm216+)-VD2+-saponite triad supramolecular system where the two cationic systems are brought closer by the anionic clay sheet.