Mark Basik , Natasha J. Caplen , Olli-P. Kallioniemi , Spyro Mousses
{"title":"Amplified genes as therapeutic targets in cancer","authors":"Mark Basik , Natasha J. Caplen , Olli-P. Kallioniemi , Spyro Mousses","doi":"10.1016/S1477-3627(03)02351-1","DOIUrl":null,"url":null,"abstract":"<div><p>The most effective targeted cancer therapies have arisen from research into genetically altered oncogenes, including BCR-ABL, HER2, RAS and EGFR. Recent advances in cancer genetics have identified many regions of the genome that undergo amplification (increase in copy number) but, in most cases, the key oncogenic targets driving the growth and survival of cancer cells remain unknown. In this review, we discuss high-throughput technologies for the discovery of putative oncogenes, and clinical and functional validation of these genes as targets for therapy. New technologies in translational genomics facilitate the identification, validation and prioritization of candidate molecular targets for anti-cancer therapy.</p></div>","PeriodicalId":101208,"journal":{"name":"TARGETS","volume":"2 4","pages":"Pages 147-153"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1477-3627(03)02351-1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TARGETS","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1477362703023511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The most effective targeted cancer therapies have arisen from research into genetically altered oncogenes, including BCR-ABL, HER2, RAS and EGFR. Recent advances in cancer genetics have identified many regions of the genome that undergo amplification (increase in copy number) but, in most cases, the key oncogenic targets driving the growth and survival of cancer cells remain unknown. In this review, we discuss high-throughput technologies for the discovery of putative oncogenes, and clinical and functional validation of these genes as targets for therapy. New technologies in translational genomics facilitate the identification, validation and prioritization of candidate molecular targets for anti-cancer therapy.