Bivariate Markov Processes and Their Estimation

Y. Ephraim, B. L. Mark
{"title":"Bivariate Markov Processes and Their Estimation","authors":"Y. Ephraim, B. L. Mark","doi":"10.1561/2000000043","DOIUrl":null,"url":null,"abstract":"A bivariate Markov process comprises a pair of random processes which are jointly Markov. One of the two processes in that pair is observable while the other plays the role of an underlying process. We are interested in three classes of bivariate Markov processes. In the first and major class of interest, the underlying and observable processes are continuous-time with finite alphabet; in the second class, they are discrete-time with finite alphabet; and in the third class, the underlying process is continuous-time with uncountably infinite alphabet, and the observable process is continuous-time with countably or uncountably infinite alphabet. We refer to processes in the first two classes as bivariate Markov chains. Important examples of continuoustime bivariate Markov chains include the Markov modulated Poisson process, and the batch Markovian arrival process. A hidden Markov model with finite alphabet is an example of a discrete-time bivariate Markov chain. In the third class we have diffusion processes observed in Brownian motion, and diffusion processes modulating the rate of a Poisson process. Bivariate Markov processes play central roles in the theory and applications of estimation, control, queuing, biomedical engineering, and reliability. We review properties of bivariate Markov processes, recursive estimation of their statistics, and recursive and iterative parameter estimation.","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"16 1","pages":"1-95"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

A bivariate Markov process comprises a pair of random processes which are jointly Markov. One of the two processes in that pair is observable while the other plays the role of an underlying process. We are interested in three classes of bivariate Markov processes. In the first and major class of interest, the underlying and observable processes are continuous-time with finite alphabet; in the second class, they are discrete-time with finite alphabet; and in the third class, the underlying process is continuous-time with uncountably infinite alphabet, and the observable process is continuous-time with countably or uncountably infinite alphabet. We refer to processes in the first two classes as bivariate Markov chains. Important examples of continuoustime bivariate Markov chains include the Markov modulated Poisson process, and the batch Markovian arrival process. A hidden Markov model with finite alphabet is an example of a discrete-time bivariate Markov chain. In the third class we have diffusion processes observed in Brownian motion, and diffusion processes modulating the rate of a Poisson process. Bivariate Markov processes play central roles in the theory and applications of estimation, control, queuing, biomedical engineering, and reliability. We review properties of bivariate Markov processes, recursive estimation of their statistics, and recursive and iterative parameter estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元马尔可夫过程及其估计
二元马尔可夫过程由一对联合马尔可夫随机过程组成。其中一个进程是可观察的,而另一个进程扮演底层进程的角色。我们对三种二元马尔可夫过程感兴趣。在第一类和主要的兴趣中,潜在的和可观察的过程是有限字母的连续时间;在第二类中,它们是具有有限字母的离散时间;在第三类中,基础过程是具有不可数无限字母的连续时间,可观察过程是具有可数或不可数无限字母的连续时间。我们把前两类过程称为二元马尔可夫链。连续时间二元马尔可夫链的重要例子包括马尔可夫调制泊松过程和批马尔可夫到达过程。有限字母隐马尔可夫模型是离散时间二元马尔可夫链的一个例子。在第三类中,我们在布朗运动中观察到扩散过程,扩散过程调节泊松过程的速率。二元马尔可夫过程在估计、控制、排队、生物医学工程和可靠性的理论和应用中发挥着核心作用。我们回顾了二元马尔可夫过程的性质,其统计量的递归估计,以及递归和迭代参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1