Development of synthetic modulator enabling long-term propagation and neurogenesis of human embryonic stem cell-derived neural progenitor cells.

IF 4.3 2区 生物学 Q1 BIOLOGY Biological Research Pub Date : 2023-11-11 DOI:10.1186/s40659-023-00471-0
Ceheng Liao, Ying Guan, Jihui Zheng, Xue Wang, Meixia Wang, Zhouhai Zhu, Qiyuan Peng, Hong-Hui Wang, Meng Li
{"title":"Development of synthetic modulator enabling long-term propagation and neurogenesis of human embryonic stem cell-derived neural progenitor cells.","authors":"Ceheng Liao, Ying Guan, Jihui Zheng, Xue Wang, Meixia Wang, Zhouhai Zhu, Qiyuan Peng, Hong-Hui Wang, Meng Li","doi":"10.1186/s40659-023-00471-0","DOIUrl":null,"url":null,"abstract":"<p><p>Neural progenitor cells (NPCs) are essential for in vitro drug screening and cell-based therapies for brain-related disorders, necessitating well-defined and reproducible culture systems. Current strategies employing protein growth factors pose challenges in terms of both reproducibility and cost. In this study, we developed a novel DNA-based modulator to regulate FGFR signaling in NPCs, thereby facilitating the long-term maintenance of stemness and promoting neurogenesis. This DNA-based FGFR-agonist effectively stimulated FGFR1 phosphorylation and activated the downstream ERK signaling pathway in human embryonic stem cell (HESC)-derived NPCs. We replaced the basic fibroblast growth factor (bFGF) in the culture medium with our DNA-based FGFR-agonist to artificially modulate FGFR signaling in NPCs. Utilizing a combination of cell experiments and bioinformatics analyses, we showed that our FGFR-agonist could enhance NPC proliferation, direct migration, and promote neurosphere formation, thus mimicking the functions of bFGF. Notably, transcriptomic analysis indicated that the FGFR-agonist could specifically influence the transcriptional program associated with stemness while maintaining the neuronal differentiation program, closely resembling the effects of bFGF. Furthermore, our culture conditions allowed for the successful propagation of NPCs through over 50 passages while retaining their ability to efficiently differentiate into neurons. Collectively, our approach offers a highly effective method for expanding NPCs, thereby providing new avenues for disease-in-dish research and drug screening aimed at combating neural degeneration.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"56 1","pages":"59"},"PeriodicalIF":4.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-023-00471-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural progenitor cells (NPCs) are essential for in vitro drug screening and cell-based therapies for brain-related disorders, necessitating well-defined and reproducible culture systems. Current strategies employing protein growth factors pose challenges in terms of both reproducibility and cost. In this study, we developed a novel DNA-based modulator to regulate FGFR signaling in NPCs, thereby facilitating the long-term maintenance of stemness and promoting neurogenesis. This DNA-based FGFR-agonist effectively stimulated FGFR1 phosphorylation and activated the downstream ERK signaling pathway in human embryonic stem cell (HESC)-derived NPCs. We replaced the basic fibroblast growth factor (bFGF) in the culture medium with our DNA-based FGFR-agonist to artificially modulate FGFR signaling in NPCs. Utilizing a combination of cell experiments and bioinformatics analyses, we showed that our FGFR-agonist could enhance NPC proliferation, direct migration, and promote neurosphere formation, thus mimicking the functions of bFGF. Notably, transcriptomic analysis indicated that the FGFR-agonist could specifically influence the transcriptional program associated with stemness while maintaining the neuronal differentiation program, closely resembling the effects of bFGF. Furthermore, our culture conditions allowed for the successful propagation of NPCs through over 50 passages while retaining their ability to efficiently differentiate into neurons. Collectively, our approach offers a highly effective method for expanding NPCs, thereby providing new avenues for disease-in-dish research and drug screening aimed at combating neural degeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类胚胎干细胞衍生神经祖细胞长期繁殖和神经发生的合成调节剂的研制。
神经祖细胞(npc)对于体外药物筛选和基于细胞的脑相关疾病治疗至关重要,需要定义良好且可重复的培养系统。目前使用蛋白质生长因子的策略在可重复性和成本方面都存在挑战。在这项研究中,我们开发了一种新的基于dna的调节剂来调节npc中的FGFR信号,从而促进干细胞的长期维持和促进神经发生。这种基于dna的fgfr激动剂在人胚胎干细胞(HESC)衍生的npc中有效地刺激FGFR1磷酸化并激活下游ERK信号通路。我们用我们的基于dna的FGFR激动剂替代培养基中的基本成纤维细胞生长因子(bFGF),人工调节npc中的FGFR信号。利用细胞实验和生物信息学分析相结合,我们发现我们的fgfr激动剂可以增强NPC的增殖,直接迁移,促进神经球的形成,从而模仿bFGF的功能。值得注意的是,转录组学分析表明,fgfr激动剂可以特异性地影响与干性相关的转录程序,同时维持神经元分化程序,与bFGF的作用非常相似。此外,我们的培养条件允许npc通过50多次传代成功繁殖,同时保持它们有效分化为神经元的能力。总的来说,我们的方法为扩大npc提供了一种非常有效的方法,从而为旨在对抗神经变性的盘内疾病研究和药物筛选提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
期刊最新文献
Overexpression of autophagy enhancer PACER/RUBCNL in neurons accelerates disease in the SOD1G93A ALS mouse model. Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12. Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. EZH1/2 plays critical roles in oocyte meiosis prophase I in mice. Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1