{"title":"Electron holography observation of electron spin polarization around charged insulating wire.","authors":"Takafumi Sato, Keiko Shimada, Zentaro Akase, Hideyuki Magara, Takeshi Tomita, Daisuke Shindo","doi":"10.1093/jmicro/dfad056","DOIUrl":null,"url":null,"abstract":"<p><p>We report direct observation by electron holography of the spin polarization of electrons in a vacuum region around a charged SiO2 wire coated with Pt-Pd. Irradiating the SiO2 wire with 300 keV electrons caused the wire to become positively charged due to the emission of secondary electrons. The spin polarization of these electrons interacting with the charged wire was observed in situ using a phase reconstruction process under an external magnetic field. The magnetic field of the spin-polarized electrons was simulated taking into account the distribution of secondary electrons and the effect of the external magnetic field.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"367-375"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report direct observation by electron holography of the spin polarization of electrons in a vacuum region around a charged SiO2 wire coated with Pt-Pd. Irradiating the SiO2 wire with 300 keV electrons caused the wire to become positively charged due to the emission of secondary electrons. The spin polarization of these electrons interacting with the charged wire was observed in situ using a phase reconstruction process under an external magnetic field. The magnetic field of the spin-polarized electrons was simulated taking into account the distribution of secondary electrons and the effect of the external magnetic field.