A. Khanifar, Ibrahim Bin Subari, Mohd Razib Bin Abd Raub, Raj Deo Tewari, Mohd Faizal Bin Sedaralit
{"title":"The World's First Offshore GASWAG EOR Full Field Implementation","authors":"A. Khanifar, Ibrahim Bin Subari, Mohd Razib Bin Abd Raub, Raj Deo Tewari, Mohd Faizal Bin Sedaralit","doi":"10.2118/208127-ms","DOIUrl":null,"url":null,"abstract":"\n A major matured Malaysian offshore oilfield with more than 40 years of production history under a combination of moderate to strong aquifer support and moderate-size gas cap will be subjected to a unique enhanced oil recovery (EOR) scheme, the first of its kind offshore, called Gravity Assisted Simultaneous Water Alternating Gas (GASWAG) injection process. It is essentially a scheme which involves simultaneously injection of gas and water which involves injecting water up-dip and gas down-dip structurally in a depleted oil reservoir. This method takes the advantage of gravity drainage mechanism to maximize recovery from un-swept oil zones down-dip by aquifer influx and up-dip by gas cap expansion processes and it could be different than the conventional water alternating gas (WAG) method.\n This paper mostly presents the dynamic modelling and simulation work which has been established during this case study to obtain the GASWAG base case model and to conduct the optimization and sensitivity assessments on the major reservoir parameters. It also describes the main subsurface uncertainties and operational risks and their impact on incremental oil reserve and the results were used to design mitigation plans to help minimize impact on oil recovery volumes. Implementing the full field scale of this EOR scheme involves a detailed reservoir management plan (RMP) with many reactivations of idle wells, well workover plans, behind casing opportunities and adding perforation interval together with identified new infill wells to maximize the flood-front movement of the injected fluids. Obviously, good communication with field operational personnel is paramount to ensure these RMP are adhered to clear targets to successfully achieve the desired incremental recovery and will be elaborated in this paper.\n This paper describes the strategy and workflow to monitor and measure the two key success factors of this project which are production attainability and reserve attainability. The success of this project depends on continuous evaluation to check the actual performance against the anticipated behavior. As soon as new information obtains along implementation, it will be assessed against targets to steer the way to the main goal of additional reserve by the end of field life. Thus, it requires a comprehensive monitoring plan with detailed surveillance and data collection and, well testing to revisit and update the dynamic model accordingly.\n The results of this study show that GASWAG has emerged to be one of the most promising techniques with the highest incremental reserve for this field among various EOR techniques evaluated such as continuous gas injection, continuous water injection, conventional WAG, aquifer-assisted WAG, and double displacement.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208127-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A major matured Malaysian offshore oilfield with more than 40 years of production history under a combination of moderate to strong aquifer support and moderate-size gas cap will be subjected to a unique enhanced oil recovery (EOR) scheme, the first of its kind offshore, called Gravity Assisted Simultaneous Water Alternating Gas (GASWAG) injection process. It is essentially a scheme which involves simultaneously injection of gas and water which involves injecting water up-dip and gas down-dip structurally in a depleted oil reservoir. This method takes the advantage of gravity drainage mechanism to maximize recovery from un-swept oil zones down-dip by aquifer influx and up-dip by gas cap expansion processes and it could be different than the conventional water alternating gas (WAG) method.
This paper mostly presents the dynamic modelling and simulation work which has been established during this case study to obtain the GASWAG base case model and to conduct the optimization and sensitivity assessments on the major reservoir parameters. It also describes the main subsurface uncertainties and operational risks and their impact on incremental oil reserve and the results were used to design mitigation plans to help minimize impact on oil recovery volumes. Implementing the full field scale of this EOR scheme involves a detailed reservoir management plan (RMP) with many reactivations of idle wells, well workover plans, behind casing opportunities and adding perforation interval together with identified new infill wells to maximize the flood-front movement of the injected fluids. Obviously, good communication with field operational personnel is paramount to ensure these RMP are adhered to clear targets to successfully achieve the desired incremental recovery and will be elaborated in this paper.
This paper describes the strategy and workflow to monitor and measure the two key success factors of this project which are production attainability and reserve attainability. The success of this project depends on continuous evaluation to check the actual performance against the anticipated behavior. As soon as new information obtains along implementation, it will be assessed against targets to steer the way to the main goal of additional reserve by the end of field life. Thus, it requires a comprehensive monitoring plan with detailed surveillance and data collection and, well testing to revisit and update the dynamic model accordingly.
The results of this study show that GASWAG has emerged to be one of the most promising techniques with the highest incremental reserve for this field among various EOR techniques evaluated such as continuous gas injection, continuous water injection, conventional WAG, aquifer-assisted WAG, and double displacement.