Micro Welding of Thin Stainless Steel Foil with a Direct Diode Laser

N. Abe, Y. Funada, T. Imanaka, M. Tsukamoto
{"title":"Micro Welding of Thin Stainless Steel Foil with a Direct Diode Laser","authors":"N. Abe, Y. Funada, T. Imanaka, M. Tsukamoto","doi":"10.2351/1.5060105","DOIUrl":null,"url":null,"abstract":"Recently, industrial product parts and components are being made smaller to reduce energy consumption and save space, creating a growing need for the micro-welding of thin foil less than 100μm thick. For this purpose, laser processing is expected to be the method of choice because it allows more precise heat control compared with arc and plasma processing. In this report, the practicability of welding thin stainless steel foil with a direct diode laser system was investigated. The elliptically shaped laser beam of the direct diode laser enabled successful butt-welding of thin stainless steel foil 100μm and less in thickness. At a output power of 100W, 100μm and 50μm thick foils could be welded at a high speed of 6.0m/min and 18.0m/min, respectively. They had narrow bead widths of 100μm which was narrower than the beam size of the laser. No spatter or plasma plume was observed when welding without an assist gas. The tensile strength of the weld bead was nearly the same as that of the base material.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"85 1","pages":"19-23"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of JWRI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/1.5060105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Recently, industrial product parts and components are being made smaller to reduce energy consumption and save space, creating a growing need for the micro-welding of thin foil less than 100μm thick. For this purpose, laser processing is expected to be the method of choice because it allows more precise heat control compared with arc and plasma processing. In this report, the practicability of welding thin stainless steel foil with a direct diode laser system was investigated. The elliptically shaped laser beam of the direct diode laser enabled successful butt-welding of thin stainless steel foil 100μm and less in thickness. At a output power of 100W, 100μm and 50μm thick foils could be welded at a high speed of 6.0m/min and 18.0m/min, respectively. They had narrow bead widths of 100μm which was narrower than the beam size of the laser. No spatter or plasma plume was observed when welding without an assist gas. The tensile strength of the weld bead was nearly the same as that of the base material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
薄不锈钢箔的直接二极管激光微焊接
最近,为了减少能源消耗和节省空间,工业产品零部件的尺寸越来越小,因此对厚度小于100μm的薄箔的微焊接需求越来越大。为此,激光加工有望成为首选方法,因为与电弧和等离子体加工相比,激光加工允许更精确的热控制。本文研究了用直接二极管激光系统焊接薄不锈钢箔的可行性。直接二极管激光器的椭圆激光束使厚度小于100μm的薄不锈钢箔成功对接焊接。在100W的输出功率下,可以分别以6.0m/min和18.0m/min的高速焊接100μm和50μm厚的箔片。它们的头宽为100μm,比激光的光束尺寸窄。在没有辅助气体的情况下焊接时,没有飞溅或等离子体羽流。焊缝的抗拉强度与母材的抗拉强度基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid System for In Situ Observation of Microstructure Evolution in Steel Materials Experiment and numerical simulation in temperature distribution and welding distortion in GMA welding Experimental observation of cleaning action of cathode spots in AC TIG welding of aluminum plates Microstructure and mechanical properties of overlaying specimens in GMAW hybrid an additional longitudinal electromagnetic field Numerical analysis on effects of power source characteristics on arc properties in gas tungsten arc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1