Yunfa Fu, Fan Wang, Yu Li, Anmin Gong, Qian Qian, Lei Su, Lei Zhao
{"title":"Real-time recognition of different imagined actions on the same side of a single limb based on the fNIRS correlation coefficient","authors":"Yunfa Fu, Fan Wang, Yu Li, Anmin Gong, Qian Qian, Lei Su, Lei Zhao","doi":"10.1515/bmt-2021-0422","DOIUrl":null,"url":null,"abstract":"Abstract Functional near-infrared spectroscopy (fNIRS) is a type of functional brain imaging. Brain-computer interfaces (BCIs) based on fNIRS have recently been implemented. Most existing fNIRS-BCI studies have involved off-line analyses, but few studies used online performance testing. Furthermore, existing online fNIRS-BCI experimental paradigms have not yet carried out studies using different imagined movements of the same side of a single limb. In the present study, a real-time fNIRS-BCI system was constructed to identify two imagined movements of the same side of a single limb (right forearm and right hand). Ten healthy subjects were recruited and fNIRS signal was collected and real-time analyzed with two imagined movements (leftward movement involving the right forearm and right-hand clenching). In addition to the mean and slope features of fNIRS signals, the correlation coefficient between fNIRS signals induced by different imagined actions was extracted. A support vector machine (SVM) was used to classify the imagined actions. The average accuracy of real-time classification of the two imagined movements was 72.25 ± 0.004%. The findings suggest that different imagined movements on the same side of a single limb can be recognized real-time based on fNIRS, which may help to further guide the practical application of online fNIRS-BCIs.","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"2 1","pages":"173 - 183"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0422","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Functional near-infrared spectroscopy (fNIRS) is a type of functional brain imaging. Brain-computer interfaces (BCIs) based on fNIRS have recently been implemented. Most existing fNIRS-BCI studies have involved off-line analyses, but few studies used online performance testing. Furthermore, existing online fNIRS-BCI experimental paradigms have not yet carried out studies using different imagined movements of the same side of a single limb. In the present study, a real-time fNIRS-BCI system was constructed to identify two imagined movements of the same side of a single limb (right forearm and right hand). Ten healthy subjects were recruited and fNIRS signal was collected and real-time analyzed with two imagined movements (leftward movement involving the right forearm and right-hand clenching). In addition to the mean and slope features of fNIRS signals, the correlation coefficient between fNIRS signals induced by different imagined actions was extracted. A support vector machine (SVM) was used to classify the imagined actions. The average accuracy of real-time classification of the two imagined movements was 72.25 ± 0.004%. The findings suggest that different imagined movements on the same side of a single limb can be recognized real-time based on fNIRS, which may help to further guide the practical application of online fNIRS-BCIs.
期刊介绍:
Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.