Potentiometric Taste Sensing Using Reduced Graphene Oxide Screen Printed Electrodes

A. Patil, U. Tupe, V. Deshmane, A. V. Patil
{"title":"Potentiometric Taste Sensing Using Reduced Graphene Oxide Screen Printed Electrodes","authors":"A. Patil, U. Tupe, V. Deshmane, A. V. Patil","doi":"10.1166/sl.2020.4302","DOIUrl":null,"url":null,"abstract":"This paper reports the development of simple and economical reduced graphene oxide (rGO) based screen-printed electrodes (SPE) for five basic taste sensing applications. Twenty different test solutions for the five tastes of salty, sour, sweet, umami, and bitter at 1 ppm, 10 ppm, 100\n ppm, 1000 ppm concentration levels were tested with the fabricated SPEs. From experimental results, electrical signals generated between the electrode and test solution interface were measured using the potentiometric method. Satisfactory potentiometric responses of SPEs to different ppm concentrations\n for each sample were used to analyze the sample data. Histogram using the statistical tool was used to analyze the changes in the conductivity response. A multivariate Principal Component Analysis (PCA) statistical tool correlated using loading plots between variables and factors of all the\n five basic tastes. The plot showed the interrelation between variables and test samples. The obtained experimental results from these rGO based SPEs make them suitable for their use in taste sensing applications such as for any taste disorder disability, food-producing industry, pharmaceutical\n industries, etc.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"47 10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports the development of simple and economical reduced graphene oxide (rGO) based screen-printed electrodes (SPE) for five basic taste sensing applications. Twenty different test solutions for the five tastes of salty, sour, sweet, umami, and bitter at 1 ppm, 10 ppm, 100 ppm, 1000 ppm concentration levels were tested with the fabricated SPEs. From experimental results, electrical signals generated between the electrode and test solution interface were measured using the potentiometric method. Satisfactory potentiometric responses of SPEs to different ppm concentrations for each sample were used to analyze the sample data. Histogram using the statistical tool was used to analyze the changes in the conductivity response. A multivariate Principal Component Analysis (PCA) statistical tool correlated using loading plots between variables and factors of all the five basic tastes. The plot showed the interrelation between variables and test samples. The obtained experimental results from these rGO based SPEs make them suitable for their use in taste sensing applications such as for any taste disorder disability, food-producing industry, pharmaceutical industries, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用还原氧化石墨烯丝网印刷电极的电位味觉传感
本文报道了用于五种基本味觉传感应用的简单经济的还原氧化石墨烯(rGO)基丝网印刷电极(SPE)的发展。在1 ppm、10 ppm、100 ppm、1000 ppm的浓度水平下,对盐、酸、甜、鲜、苦五种味道的20种不同的测试溶液进行了测试。根据实验结果,采用电位法测量电极与测试溶液界面之间产生的电信号。每个样品的SPEs对不同ppm浓度的满意电位响应用于分析样品数据。利用统计工具的直方图分析电导率响应的变化。多元主成分分析(PCA)统计工具利用五种基本口味的变量和因素之间的加载图进行相关性分析。该图显示了变量与测试样本之间的相互关系。从这些基于还原氧化石墨烯的spe中获得的实验结果使其适用于味觉传感应用,例如任何味觉障碍,食品生产行业,制药行业等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensor Letters
Sensor Letters 工程技术-电化学
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
期刊最新文献
Design of a Sensor System Using Fiber Bragg Grating for Liquid Level and Liquid Density Measurement Electrical, Optical, Structural Properties with Some Physico-Mechanical of Pure and La3+ Doped L-Alanine Acetate Single Crystals Solvent Assisted Coaxial-Electrospun Poly Methyl Methacrylate Polymer and Study of Resultant Fibers Precise Design of Micro-Cantilever Sensor for Biomedical Application Mine Fire Safety Monitoring in Underground Metal Mines: Is Zigbee Wireless Sensor Networks Technology the Best Choice?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1