MaOTLBO: Many-objective teaching-learning-based optimizer for control and monitoring the optimal power flow of modern power systems

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL International Journal of Industrial Engineering Computations Pub Date : 2023-01-01 DOI:10.5267/j.ijiec.2023.1.003
Pradeep Jangir, P. Manoharan, Sundaram B. Pandya, R. Sowmya
{"title":"MaOTLBO: Many-objective teaching-learning-based optimizer for control and monitoring the optimal power flow of modern power systems","authors":"Pradeep Jangir, P. Manoharan, Sundaram B. Pandya, R. Sowmya","doi":"10.5267/j.ijiec.2023.1.003","DOIUrl":null,"url":null,"abstract":"This paper recommends a new Many-Objective Teaching-Learning-Based Optimizer (MaOTLBO) to handle the Many-Objective Optimal Power Flow (MaO-OPF) problem of modern complex power systems while meeting different operating constraints. A reference point-based mechanism is utilized in the basic version of Teacher Learning-Based Optimizer (TLBO) to formulate the MaOTLBO algorithm and directly applied to DTLZ test benchmark functions with 5, 7, 10-objectives and IEEE-30 bus power system with six different objective functions, namely the minimization of the voltage magnitude deviation, total fuel cost, voltage stability indicator, total emission, active power loss, and reactive power loss. The results obtained from the MaOTLBO optimizer are compared with the well-known standard many-objective algorithms, such as the Multi-Objective Evolutionary Algorithm based on Decomposition with Dynamical Resource Allocation (MOEA/D-DRA) and Non-Dominated Sorting Genetic Algorithm-version-III (NSGA-III) presented in the literature. The results show the ability of the proposed MaOTLBO to solve the MaO-OPF problem in terms of convergence, coverage, and well-Spread Pareto optimal solutions. The experimental outcomes indicate that the suggested MaOTLBO gives improved individual output and compromised solutions than MOEA/D-DRA and NSGA-III algorithms.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"51 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5267/j.ijiec.2023.1.003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 5

Abstract

This paper recommends a new Many-Objective Teaching-Learning-Based Optimizer (MaOTLBO) to handle the Many-Objective Optimal Power Flow (MaO-OPF) problem of modern complex power systems while meeting different operating constraints. A reference point-based mechanism is utilized in the basic version of Teacher Learning-Based Optimizer (TLBO) to formulate the MaOTLBO algorithm and directly applied to DTLZ test benchmark functions with 5, 7, 10-objectives and IEEE-30 bus power system with six different objective functions, namely the minimization of the voltage magnitude deviation, total fuel cost, voltage stability indicator, total emission, active power loss, and reactive power loss. The results obtained from the MaOTLBO optimizer are compared with the well-known standard many-objective algorithms, such as the Multi-Objective Evolutionary Algorithm based on Decomposition with Dynamical Resource Allocation (MOEA/D-DRA) and Non-Dominated Sorting Genetic Algorithm-version-III (NSGA-III) presented in the literature. The results show the ability of the proposed MaOTLBO to solve the MaO-OPF problem in terms of convergence, coverage, and well-Spread Pareto optimal solutions. The experimental outcomes indicate that the suggested MaOTLBO gives improved individual output and compromised solutions than MOEA/D-DRA and NSGA-III algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标教-学的现代电力系统最优潮流控制与监测优化器
针对现代复杂电力系统在满足不同运行约束条件下的多目标最优潮流问题,提出了一种新的多目标教学优化器(MaOTLBO)。在基于教师学习的优化器(TLBO)基础版中,利用基于参考点的机制制定了MaOTLBO算法,并直接应用于具有5、7、10个目标的DTLZ测试基准函数和具有电压幅值偏差最小、总燃油成本最小、电压稳定指标最小、总排放最小、有功损耗最小、无功损耗最小六个不同目标函数的IEEE-30母线电力系统。将MaOTLBO优化器得到的结果与文献中提出的基于动态资源分配分解的多目标进化算法(MOEA/D-DRA)和非支配排序遗传算法-版本- iii (NSGA-III)等知名标准多目标算法进行了比较。实验结果表明,与MOEA/D-DRA和NSGA-III算法相比,所提出的MaOTLBO算法具有更好的个体输出和折衷解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
9.10%
发文量
35
审稿时长
20 weeks
期刊最新文献
A unifying framework and a mathematical model for the Slab Stack Shuffling Problem Heuristics and metaheuristics to minimize makespan for flowshop with peak power consumption constraints Minimizing operating expenditures for a manufacturing system featuring quality reassurances, probabilistic failures, overtime, and outsourcing Composite heuristics and water wave optimality algorithms for tri-criteria multiple job classes and customer order scheduling on a single machine Investigating the collective impact of postponement, scrap, and external suppliers on multiproduct replenishing decision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1