A SMART approach to quality assessment of site-based spatio-temporal data

D. Galarus, R. Angryk
{"title":"A SMART approach to quality assessment of site-based spatio-temporal data","authors":"D. Galarus, R. Angryk","doi":"10.1145/2996913.2996932","DOIUrl":null,"url":null,"abstract":"A significant challenge we face in assessing spatio-temporal data quality is a lack of ground-truth data. Error is by definition the deviation of observation from ground truth. In the absence of ground truth, we depend on our own or provider quality assessment to evaluate our methods. The focus of this paper is the development of a representative, weather-like spatio- temporal dataset and the use of this dataset to develop and evaluate a robust, interpolation-based method for assessment of data quality. We call our method the SMART method, short for Simple Mappings for the Approximation and Regression of Time series. We present this method as a representative approach to demonstrate and overcome the challenges of spatio- temporal data quality assessment. Our results bring into question the validity of provider-based quality control indicators.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A significant challenge we face in assessing spatio-temporal data quality is a lack of ground-truth data. Error is by definition the deviation of observation from ground truth. In the absence of ground truth, we depend on our own or provider quality assessment to evaluate our methods. The focus of this paper is the development of a representative, weather-like spatio- temporal dataset and the use of this dataset to develop and evaluate a robust, interpolation-based method for assessment of data quality. We call our method the SMART method, short for Simple Mappings for the Approximation and Regression of Time series. We present this method as a representative approach to demonstrate and overcome the challenges of spatio- temporal data quality assessment. Our results bring into question the validity of provider-based quality control indicators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于站点的时空数据质量评估的SMART方法
我们在评估时空数据质量时面临的一个重大挑战是缺乏真实数据。根据定义,误差是观察结果与基本真理的偏差。在缺乏基础事实的情况下,我们依靠自己或供应商的质量评估来评估我们的方法。本文的重点是开发一个具有代表性的、类似天气的时空数据集,并使用该数据集开发和评估一个稳健的、基于插值的数据质量评估方法。我们把我们的方法称为SMART方法,是时间序列近似和回归的简单映射的缩写。我们提出这种方法作为一种代表性的方法来展示和克服时空数据质量评估的挑战。我们的研究结果对基于供应商的质量控制指标的有效性提出了质疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1