Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review

Nayantara , Pawan Kaur
{"title":"Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review","authors":"Nayantara ,&nbsp;Pawan Kaur","doi":"10.1016/j.biori.2018.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoparticles (NPs) have been synthesized by various methods like physical, chemical and biological methods. Physical and chemical methods are costly and toxic to the environment. So there is an emerging need for production of nanoparticles using nontoxic, eco-friendly and reliable methods to expand their applications in agriculture field. Best option to achieve this goal is the use of biological entities such as microorganisms and plant extracts to synthesize nanoparticles. The main focus of this review is to compile the studies of synthesis of nanoparticles using “eco-friendly nano-factories” i.e., plant extract and microorganisms. Agriculture is an area where new technologies are often applied to improve the yield of crops. Plant diseases are one of the major factors that affect crop productivity. The problem with disease management lies with the detection of the exact stage of prevention. The employment of nanoparticles in agriculture field with some beneficial effects to the crops will be promising step toward nano-revolution in agriculture field. This review also summarizes antimicrobial activity of nanoparticles, their influence on the plant growth parameters and their role in plant pathogenicity.</p></div>","PeriodicalId":100187,"journal":{"name":"Biotechnology Research and Innovation","volume":"2 1","pages":"Pages 63-73"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biori.2018.09.003","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Research and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452072117301053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

Nanoparticles (NPs) have been synthesized by various methods like physical, chemical and biological methods. Physical and chemical methods are costly and toxic to the environment. So there is an emerging need for production of nanoparticles using nontoxic, eco-friendly and reliable methods to expand their applications in agriculture field. Best option to achieve this goal is the use of biological entities such as microorganisms and plant extracts to synthesize nanoparticles. The main focus of this review is to compile the studies of synthesis of nanoparticles using “eco-friendly nano-factories” i.e., plant extract and microorganisms. Agriculture is an area where new technologies are often applied to improve the yield of crops. Plant diseases are one of the major factors that affect crop productivity. The problem with disease management lies with the detection of the exact stage of prevention. The employment of nanoparticles in agriculture field with some beneficial effects to the crops will be promising step toward nano-revolution in agriculture field. This review also summarizes antimicrobial activity of nanoparticles, their influence on the plant growth parameters and their role in plant pathogenicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生态工厂纳米颗粒生物合成及其在植物致病性中的作用综述
纳米粒子的合成方法有物理、化学和生物等多种。物理和化学方法既昂贵又对环境有害。因此,利用无毒、环保和可靠的方法生产纳米颗粒以扩大其在农业领域的应用是一个新兴的需求。实现这一目标的最佳选择是利用微生物和植物提取物等生物实体来合成纳米颗粒。本文综述了利用植物提取物和微生物等“生态友好型纳米工厂”合成纳米颗粒的研究进展。农业是一个经常应用新技术来提高作物产量的领域。植物病害是影响作物生产力的主要因素之一。疾病管理的问题在于确定预防的确切阶段。纳米粒子在农业领域的应用,对农作物产生了有益的影响,是农业领域纳米革命的重要一步。综述了纳米颗粒的抗菌活性、对植物生长参数的影响及其在植物致病性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antiparasitic activity of lipid extracts from the subantarctic macroalgae Iridea cordata against Trichomonas vaginalis Real-Time PCR Assay for detection and quantification of Leishmania: standardization, positive control, validation, and intra-laboratory assay Survival mechanisms of microorganisms occurring in acid mine drainage: sulfur, iron, carbon, and nitrogen metabolic pathways Biological activities of green coffee nanoemulsions evaluated through alternative methods: MTT, cellular proliferation, and HET-CAM assays Occurrence of fumonisins and strategies for biocontrol in beer production: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1