Djimba Niane, O. Diagne, A. Ehemba, M. Socé, M. Dieng
{"title":"Generation and Recombination of a CIGSe Solar Cell under the Influence of the Thickness of a Potassium Fluoride (KF) Layer","authors":"Djimba Niane, O. Diagne, A. Ehemba, M. Socé, M. Dieng","doi":"10.12691/AJMSE-6-2-1","DOIUrl":null,"url":null,"abstract":"In this paper, we study the phenomena of generations and recombination of a CIGSe solar cell under the influence of the thickness of a potassium fluoride (KF) layer. The different thicknesses taken are respectively 15 nm, 30 nm and 45 nm and the doping rate of the base has been fixed at 1016cm-3. The simulations made with the SCAPS-1D software show, on the one hand, a decrease in the emission rate and an increase in the electron capture rate; on the other hand, an increase in the rate of emission and capture of the holes respectively, as the thickness of the KF layer increases. Furthermore, we note that the rate of recombination of the carriers increases slightly with the thickness of KF at the CIGSe layer caused by a passivation of the defects.","PeriodicalId":16171,"journal":{"name":"Journal of materials science & engineering","volume":"1 1","pages":"26-30"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials science & engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/AJMSE-6-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we study the phenomena of generations and recombination of a CIGSe solar cell under the influence of the thickness of a potassium fluoride (KF) layer. The different thicknesses taken are respectively 15 nm, 30 nm and 45 nm and the doping rate of the base has been fixed at 1016cm-3. The simulations made with the SCAPS-1D software show, on the one hand, a decrease in the emission rate and an increase in the electron capture rate; on the other hand, an increase in the rate of emission and capture of the holes respectively, as the thickness of the KF layer increases. Furthermore, we note that the rate of recombination of the carriers increases slightly with the thickness of KF at the CIGSe layer caused by a passivation of the defects.