A Low Cost sEMG Development Platform for Hand Joint Angle Acquisition

B. P. Beauchamp
{"title":"A Low Cost sEMG Development Platform for Hand Joint Angle Acquisition","authors":"B. P. Beauchamp","doi":"10.1109/IEMCON51383.2020.9284889","DOIUrl":null,"url":null,"abstract":"A consolidation of sEMG to Muscle Force signal processing and Fingertip Workspace Mathematics (FWM) is hypothesized in this literature. Consequently, this hypothesis suggests a projection matrix from muscle force to joint angles of the hand. Using a supervised kinematic algorithm, an sEMG device can learn to describe an individual's fingertip positions in two steps. The first step is inverse kinematics to learn a projection from joint angle to muscle force. The second step is forward kinematics of muscle forces to predict joint angles without direct observation. This literature presents low cost hardware design for acquiring forearm sEMG signals and fingertip joint angles. The consolidation of sEMG to muscle force and kinematic hand modeling bridges the gap between physiologic research and human interfacing technology.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"2010 1","pages":"0485-0491"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A consolidation of sEMG to Muscle Force signal processing and Fingertip Workspace Mathematics (FWM) is hypothesized in this literature. Consequently, this hypothesis suggests a projection matrix from muscle force to joint angles of the hand. Using a supervised kinematic algorithm, an sEMG device can learn to describe an individual's fingertip positions in two steps. The first step is inverse kinematics to learn a projection from joint angle to muscle force. The second step is forward kinematics of muscle forces to predict joint angles without direct observation. This literature presents low cost hardware design for acquiring forearm sEMG signals and fingertip joint angles. The consolidation of sEMG to muscle force and kinematic hand modeling bridges the gap between physiologic research and human interfacing technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手关节角度采集的低成本表面肌电信号开发平台
本文献假设表面肌电信号与肌肉力量信号处理和指尖工作空间数学(FWM)的整合。因此,这个假设提出了一个从肌肉力到手关节角度的投影矩阵。使用监督运动算法,表面肌电信号设备可以分两步学习描述个人的指尖位置。第一步是逆运动学,学习从关节角度到肌肉力的投影。第二步是肌肉力量的正运动学,在没有直接观察的情况下预测关节角度。本文介绍了一种用于获取前臂表面肌电信号和指尖关节角度的低成本硬件设计。肌电图对肌肉力量和运动学手部建模的巩固弥补了生理学研究和人机界面技术之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Financial Time Series Stock Price Prediction using Deep Learning Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems A Systematic Literature Review in Causal Association Rules Mining Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks Analysis of Requirements for Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1