{"title":"Charge Transport Properties of a Series of Metal Quinolates Utilising Dispersion-Corrected Density Functional Theory","authors":"Md. Rakib Hossain, A. Ullah, N. Chawdhury","doi":"10.21315/jps2023.34.1.7","DOIUrl":null,"url":null,"abstract":"The electronic and charge transport properties of Metal-Quinolates (Metal = Li, Na, K, Rb and Cs) compounds are theoretically investigated using AustinFrisch-Petersson functional with dispersion (APFD) corrected density functional theory (DFT). The calculated energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital ranges from 3.40 eV for LiQ to 0.93 eV for CsQ. The ionisation potential, electron affinity and chemical hardness of the compounds are calculated. We found that the electron hopping rate, kelectron of CsQ is around 150 times greater than LiQ. We suggest that CsQ is the most efficient charge injecting or transport material for organic light-emitting diodes (OLEDs). Dimer formation is desirable with all M-Quinolate with different electronic structures and (CsQ)2 dimer shows the lowest dimerisation energy.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2023.34.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The electronic and charge transport properties of Metal-Quinolates (Metal = Li, Na, K, Rb and Cs) compounds are theoretically investigated using AustinFrisch-Petersson functional with dispersion (APFD) corrected density functional theory (DFT). The calculated energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital ranges from 3.40 eV for LiQ to 0.93 eV for CsQ. The ionisation potential, electron affinity and chemical hardness of the compounds are calculated. We found that the electron hopping rate, kelectron of CsQ is around 150 times greater than LiQ. We suggest that CsQ is the most efficient charge injecting or transport material for organic light-emitting diodes (OLEDs). Dimer formation is desirable with all M-Quinolate with different electronic structures and (CsQ)2 dimer shows the lowest dimerisation energy.
期刊介绍:
The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.