Multimodal sentimental analysis for social media applications: A comprehensive review

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery Pub Date : 2021-05-31 DOI:10.1002/widm.1415
Ganesh Chandrasekaran, Tu N. Nguyen, Jude Hemanth D.
{"title":"Multimodal sentimental analysis for social media applications: A comprehensive review","authors":"Ganesh Chandrasekaran, Tu N. Nguyen, Jude Hemanth D.","doi":"10.1002/widm.1415","DOIUrl":null,"url":null,"abstract":"The analysis of sentiments is essential in identifying and classifying opinions regarding a source material that is, a product or service. The analysis of these sentiments finds a variety of applications like product reviews, opinion polls, movie reviews on YouTube, news video analysis, and health care applications including stress and depression analysis. The traditional approach of sentiment analysis which is based on text involves the collection of large textual data and different algorithms to extract the sentiment information from it. But multimodal sentimental analysis provides methods to carry out opinion analysis based on the combination of video, audio, and text which goes a way beyond the conventional text‐based sentimental analysis in understanding human behaviors. The remarkable increase in the use of social media provides a large collection of multimodal data that reflects the user's sentiment on certain aspects. This multimodal sentimental analysis approach helps in classifying the polarity (positive, negative, and neutral) of the individual sentiments. Our work aims to present a survey of recent developments in analyzing the multimodal sentiments (involving text, audio, and video/image) which involve human–machine interaction and challenges involved in analyzing them. A detailed survey on sentimental dataset, feature extraction algorithms, data fusion methods, and efficiency of different classification techniques are presented in this work.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"22 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1415","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 46

Abstract

The analysis of sentiments is essential in identifying and classifying opinions regarding a source material that is, a product or service. The analysis of these sentiments finds a variety of applications like product reviews, opinion polls, movie reviews on YouTube, news video analysis, and health care applications including stress and depression analysis. The traditional approach of sentiment analysis which is based on text involves the collection of large textual data and different algorithms to extract the sentiment information from it. But multimodal sentimental analysis provides methods to carry out opinion analysis based on the combination of video, audio, and text which goes a way beyond the conventional text‐based sentimental analysis in understanding human behaviors. The remarkable increase in the use of social media provides a large collection of multimodal data that reflects the user's sentiment on certain aspects. This multimodal sentimental analysis approach helps in classifying the polarity (positive, negative, and neutral) of the individual sentiments. Our work aims to present a survey of recent developments in analyzing the multimodal sentiments (involving text, audio, and video/image) which involve human–machine interaction and challenges involved in analyzing them. A detailed survey on sentimental dataset, feature extraction algorithms, data fusion methods, and efficiency of different classification techniques are presented in this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体应用的多模态情感分析:综合综述
情感分析对于识别和分类有关源材料(即产品或服务)的意见至关重要。对这些情绪的分析发现了各种各样的应用,如产品评论、民意调查、YouTube上的电影评论、新闻视频分析,以及包括压力和抑郁分析在内的医疗保健应用。传统的基于文本的情感分析方法涉及大量文本数据的收集和不同的算法从中提取情感信息。但多模态情感分析提供了基于视频、音频和文本结合的观点分析方法,这在理解人类行为方面超越了传统的基于文本的情感分析。社交媒体使用的显著增加提供了大量的多模式数据,这些数据反映了用户在某些方面的情绪。这种多模态情感分析方法有助于对个人情感的极性(积极、消极和中性)进行分类。我们的工作旨在对涉及人机交互的多模态情感(包括文本、音频和视频/图像)分析的最新发展以及分析它们所面临的挑战进行调查。本文详细介绍了情感数据集、特征提取算法、数据融合方法以及不同分类技术的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
期刊最新文献
Research on mining software repositories to facilitate refactoring Use of artificial intelligence algorithms to predict systemic diseases from retinal images The benefits and dangers of using machine learning to support making legal predictions Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective ExplainFix: Explainable spatially fixed deep networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1