Exploratory data analysis of crime report

I. Setiawan, Politeknik Negeri Bandung, S. Suprihanto
{"title":"Exploratory data analysis of crime report","authors":"I. Setiawan, Politeknik Negeri Bandung, S. Suprihanto","doi":"10.31940/MATRIX.V11I2.2449","DOIUrl":null,"url":null,"abstract":"Visualization of data is the appearance of data in a pictographic or graphical form. This form facilitates top management to understand the data visually and get the messages of difficult concepts or identify new patterns. The approach of the personal understanding to handle data; applying diagrams or graphs to reflect vast volumes of complex data is more comfortable than presenting over tables or statements. In this study, we conduct data processing and data visualization for crime report data that occurred in the city of Los Angeles in the range of 2010 to 2017 using R language. The research methodology follows five steps, namely: variables identification, data pre-processing, univariate analysis, bivariate analysis, and multivariate analysis. This paper analyses data related to crime variables, time of occurrence, victims, type of crime, weapons used, distribution, and trends of crime, and the relationship between these variables. As the result shows, by using those methods, we can gain insights, understandings, new patterns, and do visual analytics from the existing data. The variations of crime variables presented in this paper are only a few of the many variations that can be made. Other variations can be performed to get more insights, understandings, and new patterns from the existing data. The methods can be performed on other types of data as well.","PeriodicalId":31964,"journal":{"name":"Matrix Jurnal Manajemen Teknologi dan Informatika","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Jurnal Manajemen Teknologi dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31940/MATRIX.V11I2.2449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visualization of data is the appearance of data in a pictographic or graphical form. This form facilitates top management to understand the data visually and get the messages of difficult concepts or identify new patterns. The approach of the personal understanding to handle data; applying diagrams or graphs to reflect vast volumes of complex data is more comfortable than presenting over tables or statements. In this study, we conduct data processing and data visualization for crime report data that occurred in the city of Los Angeles in the range of 2010 to 2017 using R language. The research methodology follows five steps, namely: variables identification, data pre-processing, univariate analysis, bivariate analysis, and multivariate analysis. This paper analyses data related to crime variables, time of occurrence, victims, type of crime, weapons used, distribution, and trends of crime, and the relationship between these variables. As the result shows, by using those methods, we can gain insights, understandings, new patterns, and do visual analytics from the existing data. The variations of crime variables presented in this paper are only a few of the many variations that can be made. Other variations can be performed to get more insights, understandings, and new patterns from the existing data. The methods can be performed on other types of data as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
犯罪报告的探索性数据分析
数据的可视化是以象形文字或图形形式显示数据。这种形式有助于高层管理人员直观地理解数据,并获得困难概念的信息或识别新模式。个人理解处理数据的方法;应用图表或图形来反映大量复杂的数据比用表格或语句来表示要舒服得多。在本研究中,我们使用R语言对2010年至2017年发生在洛杉矶市的犯罪报告数据进行数据处理和数据可视化。研究方法分为五个步骤:变量识别、数据预处理、单因素分析、双因素分析和多因素分析。本文分析了与犯罪变量、发生时间、受害者、犯罪类型、使用的武器、分布和犯罪趋势相关的数据,以及这些变量之间的关系。结果表明,通过使用这些方法,我们可以从现有数据中获得见解,理解,新的模式,并进行可视化分析。本文中提出的犯罪变量的变化只是许多变化中的一小部分。可以执行其他变化,以从现有数据中获得更多的见解、理解和新模式。这些方法也可以在其他类型的数据上执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Optimizing transaction data performance in database management systems Library apps to improve the digitization of Sekolah Penggerak Program Literature review: visible light communication system business model scheme for telecommunication business in Indonesia Determination of the best rule-based analysis results from the comparison of the Fp-Growth, Apriori, and TPQ-Apriori Algorithms for recommendation systems The empirical study of Joomla CMS map extension and location performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1