ADCN: an anisotropic density-based clustering algorithm

Gengchen Mai, K. Janowicz, Yingjie Hu, Song Gao
{"title":"ADCN: an anisotropic density-based clustering algorithm","authors":"Gengchen Mai, K. Janowicz, Yingjie Hu, Song Gao","doi":"10.1145/2996913.2996940","DOIUrl":null,"url":null,"abstract":"In this work we introduce an anisotropic density-based clustering algorithm. It outperforms DBSCAN and OPTICS for the detection of anisotropic spatial point patterns and performs equally well in cases that do not explicitly benefit from an anisotropic perspective. ADCN has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index, O(n2) otherwise.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work we introduce an anisotropic density-based clustering algorithm. It outperforms DBSCAN and OPTICS for the detection of anisotropic spatial point patterns and performs equally well in cases that do not explicitly benefit from an anisotropic perspective. ADCN has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index, O(n2) otherwise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADCN:基于各向异性密度的聚类算法
本文介绍了一种基于各向异性密度的聚类算法。它在检测各向异性空间点模式方面优于DBSCAN和OPTICS,并且在不明显受益于各向异性视角的情况下表现同样良好。ADCN具有与DBSCAN和OPTICS相同的时间复杂度,使用空间索引时为O(n log n),不使用空间索引时为O(n2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1