Building and Auto-Tuning Computing Kernels: Experimenting with BOAST and StarPU in the GYSELA Code

Julien Bigot, V. Grandgirard, G. Latu, J. Méhaut, L. F. Millani, C. Passeron, S. Masnada, J. Richard, B. Videau
{"title":"Building and Auto-Tuning Computing Kernels: Experimenting with BOAST and StarPU in the GYSELA Code","authors":"Julien Bigot, V. Grandgirard, G. Latu, J. Méhaut, L. F. Millani, C. Passeron, S. Masnada, J. Richard, B. Videau","doi":"10.1051/PROC/201863152","DOIUrl":null,"url":null,"abstract":"Modeling turbulent transport is a major goal in order to predict confinement performance in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma; this leads to huge computational needs. Therefore, optimization of the code is an especially important aspect, especially since coprocessors and complex manycore architectures are foreseen as building blocks for Exascale systems. This project aims to evaluate the applicability of two auto-tuning approaches with the BOAST and StarPU tools on the gysela code in order to circumvent performance portability issues. A specific computation intensive kernel is considered in order to evaluate the benefit of these methods. StarPU enables to match the performance and even sometimes outperform the hand-optimized version of the code while leaving scheduling choices to an automated process. BOAST on the other hand reveals to be well suited to get a gain in terms of execution time on four architectures. Speedups in-between 1.9 and 5.7 are obtained on a cornerstone computation intensive kernel.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"25 1 1","pages":"152-178"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/201863152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modeling turbulent transport is a major goal in order to predict confinement performance in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma; this leads to huge computational needs. Therefore, optimization of the code is an especially important aspect, especially since coprocessors and complex manycore architectures are foreseen as building blocks for Exascale systems. This project aims to evaluate the applicability of two auto-tuning approaches with the BOAST and StarPU tools on the gysela code in order to circumvent performance portability issues. A specific computation intensive kernel is considered in order to evaluate the benefit of these methods. StarPU enables to match the performance and even sometimes outperform the hand-optimized version of the code while leaving scheduling choices to an automated process. BOAST on the other hand reveals to be well suited to get a gain in terms of execution time on four architectures. Speedups in-between 1.9 and 5.7 are obtained on a cornerstone computation intensive kernel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建和自动调优计算内核:GYSELA代码中自夸和StarPU的实验
模拟湍流输运是预测托卡马克等离子体约束性能的主要目标。陀螺动力学框架考虑五维计算域来研究等离子体中的动力学问题;这导致了巨大的计算需求。因此,代码的优化是一个特别重要的方面,特别是因为协处理器和复杂的多核架构被预见为Exascale系统的构建块。这个项目旨在评估使用自夸和StarPU工具的两种自动调优方法在gysela代码上的适用性,以规避性能可移植性问题。为了评估这些方法的效益,考虑了一个特定的计算密集型核。StarPU能够匹配性能,有时甚至优于手工优化版本的代码,而将调度选择留给自动化过程。另一方面,自夸显示它非常适合在四个体系结构上获得执行时间方面的增益。在基础计算密集型内核上获得1.9到5.7之间的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Derivation via Hamilton's principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena Study of relaxation processes in a two-phase flow model Accelerating metabolic models evaluation with statistical metamodels: application to Salmonella infection models Mortensen observer for a class of variational inequalities – lost equivalence with stochastic filtering approaches Comparison of statistical, machine learning, and mathematical modelling methods to investigate the effect of ageing on dog’s cardiovascular system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1