Suppression of Ghost Targets in Focusing Azimuth Periodically Gapped SAR Raw Data with Complex Iterative Thresholding Algorithm

Yulei Qian, Daiyin Zhu
{"title":"Suppression of Ghost Targets in Focusing Azimuth Periodically Gapped SAR Raw Data with Complex Iterative Thresholding Algorithm","authors":"Yulei Qian, Daiyin Zhu","doi":"10.1109/SAM48682.2020.9104379","DOIUrl":null,"url":null,"abstract":"An algorithm is presented in this paper to focus the azimuth periodically gapped SAR (Synthetic Aperture Radar) raw data. The proposed algorithm mainly contains phase multiplication in range frequency domain and sparse reconstruction in range Doppler domain. The phase multiplication in range frequency domain aims to acquire sparser data in range Doppler domain. Then, the complex iterative thresholding algorithm is utilized to reconstruct the complete SAR data in range Doppler domain. The iterative thresholding algorithm is extended to cope with the complex SAR data. Afterwards, the traditional SAR focusing methods are capable of obtaining image from the recovered data. The proposed method performs well on suppressing ghost targets induced by gapping. Point target simulation is implemented to assess the validity of the proposed method. In addition, real SAR data experiment is also utilized to demonstrate the effectiveness of the proposed method.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An algorithm is presented in this paper to focus the azimuth periodically gapped SAR (Synthetic Aperture Radar) raw data. The proposed algorithm mainly contains phase multiplication in range frequency domain and sparse reconstruction in range Doppler domain. The phase multiplication in range frequency domain aims to acquire sparser data in range Doppler domain. Then, the complex iterative thresholding algorithm is utilized to reconstruct the complete SAR data in range Doppler domain. The iterative thresholding algorithm is extended to cope with the complex SAR data. Afterwards, the traditional SAR focusing methods are capable of obtaining image from the recovered data. The proposed method performs well on suppressing ghost targets induced by gapping. Point target simulation is implemented to assess the validity of the proposed method. In addition, real SAR data experiment is also utilized to demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂迭代阈值算法抑制方位角周期性间隙SAR原始数据中的鬼目标
提出了一种方位角周期性间隙SAR (Synthetic Aperture Radar)原始数据的聚焦算法。该算法主要包含距离频域的相位乘法和距离多普勒域的稀疏重构。距离频域的相位倍增是为了在距离多普勒域获得更稀疏的数据。然后,利用复迭代阈值算法在距离多普勒域重构SAR完整数据。将迭代阈值算法扩展到处理复杂SAR数据。然后,传统的SAR聚焦方法能够从恢复数据中获得图像。该方法能很好地抑制间隙诱导的虚影目标。通过点目标仿真验证了该方法的有效性。此外,还利用实际SAR数据实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1