Determination of Reinforced Fly Ash Concrete Columns’ Resistance Using Nonlinear Models of Materials

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Periodica Polytechnica-Civil Engineering Pub Date : 2023-01-18 DOI:10.3311/ppci.20626
V. Dang, Vongchith Sykhampha, Truong-Thang Nguyen
{"title":"Determination of Reinforced Fly Ash Concrete Columns’ Resistance Using Nonlinear Models of Materials","authors":"V. Dang, Vongchith Sykhampha, Truong-Thang Nguyen","doi":"10.3311/ppci.20626","DOIUrl":null,"url":null,"abstract":"This article introduces experimental and analytical studies on the resistance under eccentric loads of reinforced fly ash concrete (RFAC) columns, in which fly ash (FA) is used to partially replace ordinary Portland cement (OPC) with a by-mass ratio of 20%. Based on experimental results of concrete specimens with mean 28-day cylinder strength of 30 MPa, modifications on simplified bi-linear and tri-linear models of stress-strain relationships of OPC concrete specified in the Russian and Vietnamese design standards are proposed. These nonlinear deformation models are incorporated into an analytical approach to establish the resistance of RFAC columns in the form of interaction surface, associated with an assessment method for safety factor based on the principle of inverse distance weighted average (IDWA). Parameters of the proposed analytical approach are determined by test results obtained from eight RFAC column specimens having 150 × 200 (mm) rectangular cross-section, 1600 mm-height, and 4Φ14 longitudinal rebars with yield strength of 362.6 MPa. In the tests, the specimens were loaded with uniaxial eccentricities ranging from 0 to 80 mm until failed. It is shown that with ε’b1 = 0.0022 and kE = 0.91, the corresponding safety factors of bi-linear and tri-linear models validated for the tested specimens are conservative and nearest to unity, proving that the proposed analytical approach is capable of closely predicting the RFAC columns’ resistance.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"42 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.20626","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

This article introduces experimental and analytical studies on the resistance under eccentric loads of reinforced fly ash concrete (RFAC) columns, in which fly ash (FA) is used to partially replace ordinary Portland cement (OPC) with a by-mass ratio of 20%. Based on experimental results of concrete specimens with mean 28-day cylinder strength of 30 MPa, modifications on simplified bi-linear and tri-linear models of stress-strain relationships of OPC concrete specified in the Russian and Vietnamese design standards are proposed. These nonlinear deformation models are incorporated into an analytical approach to establish the resistance of RFAC columns in the form of interaction surface, associated with an assessment method for safety factor based on the principle of inverse distance weighted average (IDWA). Parameters of the proposed analytical approach are determined by test results obtained from eight RFAC column specimens having 150 × 200 (mm) rectangular cross-section, 1600 mm-height, and 4Φ14 longitudinal rebars with yield strength of 362.6 MPa. In the tests, the specimens were loaded with uniaxial eccentricities ranging from 0 to 80 mm until failed. It is shown that with ε’b1 = 0.0022 and kE = 0.91, the corresponding safety factors of bi-linear and tri-linear models validated for the tested specimens are conservative and nearest to unity, proving that the proposed analytical approach is capable of closely predicting the RFAC columns’ resistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非线性材料模型确定加筋粉煤灰混凝土柱的阻力
本文介绍了用粉煤灰(FA)部分替代普通硅酸盐水泥(OPC)(质量比为20%)的增强粉煤灰混凝土(RFAC)柱在偏心荷载作用下的阻力试验和分析研究。基于平均28天柱强度为30 MPa的混凝土试件试验结果,对俄罗斯和越南设计标准中规定的OPC混凝土应力-应变关系简化双线和三线模型进行了修正。将这些非线性变形模型结合到以相互作用面形式建立RFAC柱抗力的解析方法中,并结合基于反距离加权平均(IDWA)原理的安全系数评估方法。采用矩形截面为150 × 200 (mm),高度为1600 mm,纵向钢筋为4Φ14,屈服强度为362.6 MPa的8个RFAC柱试件的试验结果确定了分析方法的参数。在试验中,试件被加载在0 ~ 80mm的单轴偏心率范围内,直到失效。结果表明,当ε ' b1 = 0.0022, kE = 0.91时,验证的双线性和三线性模型的安全系数是保守的且最接近统一的,表明该分析方法能够较好地预测RFAC柱的阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Periodica Polytechnica-Civil Engineering
Periodica Polytechnica-Civil Engineering 工程技术-工程:土木
CiteScore
3.40
自引率
16.70%
发文量
89
审稿时长
12 months
期刊介绍: Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly. Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering. The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.
期刊最新文献
Investigation of the Feasibility of Increasing the Tail-grouting Zone during Mechanized Tunneling in Sandy Soils A New Optimal Sensor Location Method for Double-curvature Arch Dams: A Comparison with the Modal Assurance Criterion (MAC) Experimental Study on Direct Shear Strength of Fiber Reinforced Self Compacting Concrete under Acid and Sulfate Attack Numerical Investigation of Cyclic Behavior of Angled U-shaped Yielding Damper on Steel Frames Overview of the Empirical Relations between Different Aggregate Degradation Values and Rock Strength Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1