{"title":"Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes","authors":"M. Suss","doi":"10.1149/2.1201709jes","DOIUrl":null,"url":null,"abstract":"Capacitive deionization (CDI) is a fast-emerging technology most commonly applied to brackish water desalination. In CDI, salt ions are removed from the feedwater and stored in electric double layers (EDLs) within micropores of electrically charged porous carbon electrodes. Recent experiments have demonstrated that CDI electrodes exhibit selective ion removal based on ion size, with the smaller ion being preferentially removed in the case of equal-valence ions. However, state-of-the-art CDI theory does not capture this observed selectivity, as it assumes volume-less point ions in the micropore EDLs. We here present a theory which includes multiple couterionic species, and relaxes the point ion assumption by incorporating ion volume exclusion interactions into a description of the micropore EDLs. The developed model is a coupled set of nonlinear algebraic equations which can be solved for micropore ion concentrations and electrode Donnan potential at cell equilibrium. We demonstrate that this model captures key features of the experimentally observed size-based ion selectivity of CDI electrodes.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.1201709jes","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69
Abstract
Capacitive deionization (CDI) is a fast-emerging technology most commonly applied to brackish water desalination. In CDI, salt ions are removed from the feedwater and stored in electric double layers (EDLs) within micropores of electrically charged porous carbon electrodes. Recent experiments have demonstrated that CDI electrodes exhibit selective ion removal based on ion size, with the smaller ion being preferentially removed in the case of equal-valence ions. However, state-of-the-art CDI theory does not capture this observed selectivity, as it assumes volume-less point ions in the micropore EDLs. We here present a theory which includes multiple couterionic species, and relaxes the point ion assumption by incorporating ion volume exclusion interactions into a description of the micropore EDLs. The developed model is a coupled set of nonlinear algebraic equations which can be solved for micropore ion concentrations and electrode Donnan potential at cell equilibrium. We demonstrate that this model captures key features of the experimentally observed size-based ion selectivity of CDI electrodes.