{"title":"Sparse convolutional neural network acceleration with lossless input feature map compression for resource-constrained systems","authors":"Jisu Kwon, Joonho Kong, Arslan Munir","doi":"10.1049/cdt2.12038","DOIUrl":null,"url":null,"abstract":"<p>Many recent research efforts have exploited data sparsity for the acceleration of convolutional neural network (CNN) inferences. However, the effects of data transfer between main memory and the CNN accelerator have been largely overlooked. In this work, the authors propose a CNN acceleration technique that leverages hardware/software co-design and exploits the sparsity in input feature maps (IFMs). On the software side, the authors' technique employs a novel lossless compression scheme for IFMs, which are sent to the hardware accelerator via direct memory access. On the hardware side, the authors' technique uses a CNN inference accelerator that performs convolutional layer operations with their compressed data format. With several design optimization techniques, the authors have implemented their technique in a field-programmable gate array (FPGA) system-on-chip platform and evaluated their technique for six different convolutional layers in SqueezeNet. Results reveal that the authors' technique improves the performance by 1.1×–22.6× while reducing energy consumption by 47.7%–97.4% as compared to the CPU-based execution. Furthermore, results indicate that the IFM size and transfer latency are reduced by 34.0%–85.2% and 4.4%–75.7%, respectively, compared to the case without data compression. In addition, the authors' hardware accelerator shows better performance per hardware resource with less than or comparable power consumption to the state-of-the-art FPGA-based designs.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"16 1","pages":"29-43"},"PeriodicalIF":1.1000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12038","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12038","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5
Abstract
Many recent research efforts have exploited data sparsity for the acceleration of convolutional neural network (CNN) inferences. However, the effects of data transfer between main memory and the CNN accelerator have been largely overlooked. In this work, the authors propose a CNN acceleration technique that leverages hardware/software co-design and exploits the sparsity in input feature maps (IFMs). On the software side, the authors' technique employs a novel lossless compression scheme for IFMs, which are sent to the hardware accelerator via direct memory access. On the hardware side, the authors' technique uses a CNN inference accelerator that performs convolutional layer operations with their compressed data format. With several design optimization techniques, the authors have implemented their technique in a field-programmable gate array (FPGA) system-on-chip platform and evaluated their technique for six different convolutional layers in SqueezeNet. Results reveal that the authors' technique improves the performance by 1.1×–22.6× while reducing energy consumption by 47.7%–97.4% as compared to the CPU-based execution. Furthermore, results indicate that the IFM size and transfer latency are reduced by 34.0%–85.2% and 4.4%–75.7%, respectively, compared to the case without data compression. In addition, the authors' hardware accelerator shows better performance per hardware resource with less than or comparable power consumption to the state-of-the-art FPGA-based designs.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.