Improving Quality of Long-Term Bond Price Prediction Using Artificial Neural Networks

R. Verner, M. Tkáč, M. Tkáč
{"title":"Improving Quality of Long-Term Bond Price Prediction Using Artificial Neural Networks","authors":"R. Verner, M. Tkáč, M. Tkáč","doi":"10.12776/QIP.V25I1.1532","DOIUrl":null,"url":null,"abstract":"Purpose: The aim of this paper is to propose nonlinear autoregressive neural network which can improve quality of bond price forecasting. Methodology/Approach: Due to the complex nature of market information that influence bonds, artificial intelligence could be accurate, robust and fast choice of bond price prediction method. Findings: Our results have reached a coefficient of determination higher than 95% in the training, validation and testing sets. Moreover, we proposed the nonlinear autoregressive network with external inputs using 50 year interest-rate swaps denominated in EUR and volatility index VIX as two external variables. Research Limitation/Implication: Our sample of daily prices between 4th January 2016 and 13th January 2021 (totally 1,270 trading days) suggest that both Levenberg-Marquardt and Scaled conjugate gradient learning algorithms achieved excellent results. Originality/Value of paper: Despite the fact that both learning algorithms achieved satisfying outcomes, implementation of an independent variable into the autoregressive neural network environment had no significant impact on prediction ability of the model. Category: Research paper","PeriodicalId":44057,"journal":{"name":"Quality Innovation Prosperity-Kvalita Inovacia Prosperita","volume":"48 1","pages":"103-123"},"PeriodicalIF":1.2000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Innovation Prosperity-Kvalita Inovacia Prosperita","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12776/QIP.V25I1.1532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose: The aim of this paper is to propose nonlinear autoregressive neural network which can improve quality of bond price forecasting. Methodology/Approach: Due to the complex nature of market information that influence bonds, artificial intelligence could be accurate, robust and fast choice of bond price prediction method. Findings: Our results have reached a coefficient of determination higher than 95% in the training, validation and testing sets. Moreover, we proposed the nonlinear autoregressive network with external inputs using 50 year interest-rate swaps denominated in EUR and volatility index VIX as two external variables. Research Limitation/Implication: Our sample of daily prices between 4th January 2016 and 13th January 2021 (totally 1,270 trading days) suggest that both Levenberg-Marquardt and Scaled conjugate gradient learning algorithms achieved excellent results. Originality/Value of paper: Despite the fact that both learning algorithms achieved satisfying outcomes, implementation of an independent variable into the autoregressive neural network environment had no significant impact on prediction ability of the model. Category: Research paper
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络提高长期债券价格预测质量
目的:提出一种能提高债券价格预测质量的非线性自回归神经网络。方法/途径:由于影响债券的市场信息的复杂性,人工智能可以准确、稳健、快速地选择债券价格预测方法。结果:我们的结果在训练集、验证集和测试集上的决定系数都达到了95%以上。此外,我们以50年期欧元利率掉期和波动率指数VIX作为两个外部变量,提出了具有外部输入的非线性自回归网络。研究限制/启示:我们对2016年1月4日至2021年1月13日(共1,270个交易日)的每日价格样本表明,Levenberg-Marquardt和Scaled共轭梯度学习算法都取得了出色的结果。论文的独创性/价值:尽管两种学习算法都取得了令人满意的结果,但在自回归神经网络环境中加入自变量对模型的预测能力没有显著影响。类别:研究论文
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
13.30%
发文量
16
审稿时长
6 weeks
期刊最新文献
Benchmarking of the e-Learning Quality Assurance in Vocational Education and Training: Project Results Mapping the Accidents and Unsafe Conditions of Workers in the Automotive Sector Developing a Systematic and Practical Road Map for Implementing Quality 4.0 Quality 4.0 in Digital Manufacturing – Example of Good Practice Comparative Analysis of Innovation Districts to Set Up Performance Goals for Tec Innovation District
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1