Climate Forecasting Models for Precise Management Using Extreme Value Theory

Pannarat Guayjarernpanishk, Monchaya Chiangpradit, Butsakorn Kong-ied, Nipaporn Chutiman
{"title":"Climate Forecasting Models for Precise Management Using Extreme Value Theory","authors":"Pannarat Guayjarernpanishk, Monchaya Chiangpradit, Butsakorn Kong-ied, Nipaporn Chutiman","doi":"10.28991/cej-2023-09-07-014","DOIUrl":null,"url":null,"abstract":"The objective of this research was to develop a mathematical and statistical model for long-term prediction. The Extreme Value Theory (EVT) was applied to analyze the appropriate distribution model by using the peak-over-threshold approach with Generalized Pareto Distribution (GPD) to predict daily extreme precipitation and extreme temperatures in eight provinces located in the upper northeastern region of Thailand. Generally, each province has only 1–2 meteorological stations, so spatial analysis cannot be performed comprehensively. Therefore, the reanalysis data were obtained from the NOAA Physical Sciences Laboratory. The precipitation data were used for spatial analysis at the level of 25 square kilometers, which comprises 71 grid points, whereas the temperature data were used for spatial analysis at the level of 50 square kilometers, which includes 19 grid points. According to the analysis results, GPD was appropriate for the goodness of fit test with Kolmogorov-Smirnov Statistics (KS Test) according to the estimation for the return level in the annual return periods of 2 years, 5 years, 10 years, 25 years, 50 years, and 100 years, indicating the areas with daily extreme precipitation and extreme temperatures. The analysis results would be useful for supplementing decision-making in planning to cope with risk areas as well as in effective planning for resources and prevention. Doi: 10.28991/CEJ-2023-09-07-014 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-07-014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this research was to develop a mathematical and statistical model for long-term prediction. The Extreme Value Theory (EVT) was applied to analyze the appropriate distribution model by using the peak-over-threshold approach with Generalized Pareto Distribution (GPD) to predict daily extreme precipitation and extreme temperatures in eight provinces located in the upper northeastern region of Thailand. Generally, each province has only 1–2 meteorological stations, so spatial analysis cannot be performed comprehensively. Therefore, the reanalysis data were obtained from the NOAA Physical Sciences Laboratory. The precipitation data were used for spatial analysis at the level of 25 square kilometers, which comprises 71 grid points, whereas the temperature data were used for spatial analysis at the level of 50 square kilometers, which includes 19 grid points. According to the analysis results, GPD was appropriate for the goodness of fit test with Kolmogorov-Smirnov Statistics (KS Test) according to the estimation for the return level in the annual return periods of 2 years, 5 years, 10 years, 25 years, 50 years, and 100 years, indicating the areas with daily extreme precipitation and extreme temperatures. The analysis results would be useful for supplementing decision-making in planning to cope with risk areas as well as in effective planning for resources and prevention. Doi: 10.28991/CEJ-2023-09-07-014 Full Text: PDF
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极值理论用于精确管理的气候预报模型
本研究的目的是建立一个长期预测的数学和统计模型。应用极值理论(EVT)对泰国东北部上部8个省份的日极端降水和极端气温进行了预测,并结合广义帕累托分布(GPD),采用峰值超过阈值法分析了极值分布模型。一般每个省只有1-2个气象站,无法进行全面的空间分析。因此,再分析数据来自NOAA物理科学实验室。降水数据用于25平方公里水平的空间分析,包括71个格点;温度数据用于50平方公里水平的空间分析,包括19个格点。分析结果表明,根据对2年、5年、10年、25年、50年和100年年回归期的回归水平的估计,GPD适合于Kolmogorov-Smirnov Statistics (KS检验)的拟合优度检验,表明日极端降水和极端温度发生的区域。分析结果将有助于在规划应对风险领域以及有效规划资源和预防方面补充决策。Doi: 10.28991/CEJ-2023-09-07-014全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
期刊最新文献
Optimizing the Flexural Behavior of Bamboo Reinforced Concrete Beams Containing Cassava Peel Ash using Response Surface Methodology The Hydrodynamic Model Application for Future Coastal Zone Development in Remote Area Structural Strengthening of Insufficiently Designed Reinforced Concrete T-Beams using CFRP Composites Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading Post Fire Behavior of Structural Reinforced Concrete Member (Slab) Repairing with Various Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1