É. David, A. Sami, R. Soltani, M. Frechette, S. Savoie
{"title":"Low-Frequency Dielectric Response of Epoxy-Based Polymer Composites","authors":"É. David, A. Sami, R. Soltani, M. Frechette, S. Savoie","doi":"10.1109/CEIDP.2008.4772796","DOIUrl":null,"url":null,"abstract":"The low-frequency dielectric response of polymeric materials, typically in the range of 10-5 to 102 Hz at room temperature, is related to various phenomena. Direct conduction, quasi DC conduction also known as low-frequency dispersion, alpha dipolar relaxation mechanisms, which are located in the low-frequency part of the spectrum for glassy polymers, are included in these phenomena and appeared generally below 1 Hz. The presence of a load, nano or micrometric in size, is known to significantly affect the low-frequency dielectric properties of the based matrix. New mechanisms related to the morphology and interfacial effects, such as the Maxwell-Wagner interfacial polarization, could then superimpose to the already existing relaxation mechanisms. In order to further investigate the low-frequency response of various reinforced epoxy-based composites, both time and frequency domain spectroscopy were conducted. Different types of epoxy microcomposites containing a high content of quartz, i.e. 60% wt. and microcomposites load with SiC particles, were prepared. Measurements were also performed on epoxy-mica composite made of paper-backed mica flakes bonded by the resin.","PeriodicalId":6381,"journal":{"name":"2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"5 1","pages":"505-508"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2008.4772796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The low-frequency dielectric response of polymeric materials, typically in the range of 10-5 to 102 Hz at room temperature, is related to various phenomena. Direct conduction, quasi DC conduction also known as low-frequency dispersion, alpha dipolar relaxation mechanisms, which are located in the low-frequency part of the spectrum for glassy polymers, are included in these phenomena and appeared generally below 1 Hz. The presence of a load, nano or micrometric in size, is known to significantly affect the low-frequency dielectric properties of the based matrix. New mechanisms related to the morphology and interfacial effects, such as the Maxwell-Wagner interfacial polarization, could then superimpose to the already existing relaxation mechanisms. In order to further investigate the low-frequency response of various reinforced epoxy-based composites, both time and frequency domain spectroscopy were conducted. Different types of epoxy microcomposites containing a high content of quartz, i.e. 60% wt. and microcomposites load with SiC particles, were prepared. Measurements were also performed on epoxy-mica composite made of paper-backed mica flakes bonded by the resin.