Performance evaluation of short-wavelength FIR laser polarimeter with dual silicon photoelastic modulators

T. Akiyama, K. Kawahata, S. Okajima, K. Nakayama
{"title":"Performance evaluation of short-wavelength FIR laser polarimeter with dual silicon photoelastic modulators","authors":"T. Akiyama, K. Kawahata, S. Okajima, K. Nakayama","doi":"10.1080/10519990902884522","DOIUrl":null,"url":null,"abstract":"Measurement of an internal magnetic field distribution in magnetically confined fusion devices is indispensable for both understanding the plasma physics and controlling plasmas. A polari-interferometer based on the Faraday effect has been used for such a purpose. This paper describes performance evaluations of a part of the polarimeter with photoelastic modulators (PEMs) of the short-wavelength far-infrared (FIR) laser polari-interferometer. The wavelengths of the light source are 57.2 and 47.7 μ m, which are suitable for a high-density operation and large fusion devices. The PEM for the FIR region is newly developed with high-resistive silicon in which absorption of the FIR laser is small. The polarization angle is successfully measured and an angle resolution of 0.01° with a time resolution of 1 ms is achieved. A drift of the baseline of about 0.1° for 1000 s is observed and is found to be caused by changes in the room temperature.","PeriodicalId":54600,"journal":{"name":"Plasma Devices and Operations","volume":"45 1","pages":"117 - 125"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Devices and Operations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10519990902884522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement of an internal magnetic field distribution in magnetically confined fusion devices is indispensable for both understanding the plasma physics and controlling plasmas. A polari-interferometer based on the Faraday effect has been used for such a purpose. This paper describes performance evaluations of a part of the polarimeter with photoelastic modulators (PEMs) of the short-wavelength far-infrared (FIR) laser polari-interferometer. The wavelengths of the light source are 57.2 and 47.7 μ m, which are suitable for a high-density operation and large fusion devices. The PEM for the FIR region is newly developed with high-resistive silicon in which absorption of the FIR laser is small. The polarization angle is successfully measured and an angle resolution of 0.01° with a time resolution of 1 ms is achieved. A drift of the baseline of about 0.1° for 1000 s is observed and is found to be caused by changes in the room temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双硅光弹性调制器短波FIR激光偏振计的性能评价
磁约束聚变装置内部磁场分布的测量对于理解等离子体物理和控制等离子体是必不可少的。基于法拉第效应的偏振干涉仪已被用于此目的。本文介绍了短波远红外激光偏振干涉仪中光弹性调制器(PEMs)部分偏振计的性能评价。光源波长为57.2 μ m和47.7 μ m,适合高密度操作和大型聚变装置。用于FIR区域的PEM是新开发的高阻硅材料,其对FIR激光的吸收很小。成功地测量了偏振角,获得了0.01°的角度分辨率和1ms的时间分辨率。观察到基线在1000秒内漂移约0.1°,发现这是由室温的变化引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Devices and Operations
Plasma Devices and Operations 物理-核科学技术
自引率
0.00%
发文量
0
期刊最新文献
Merger announcement Preliminary plasma focus studies at ODAK-3K device using track detectors Stray magnetic field produced by ITER tokamak complex Generation of degenerate modes in suddenly created cold weakly nonlinear magnetized plasma Investigations of mirrors for ITER diagnostics in modern fusion devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1