Complex Network Analysis of a Tourism Content Sharing Network

A. Becheru, C. Bǎdicǎ, Mihaita Antonie
{"title":"Complex Network Analysis of a Tourism Content Sharing Network","authors":"A. Becheru, C. Bǎdicǎ, Mihaita Antonie","doi":"10.1109/SYNASC.2015.67","DOIUrl":null,"url":null,"abstract":"This paper presents results of the analysis of a tourism information Web-site (AmFostAcolo.ro) by using Complex Networks (CN) methods. The work accomplished here complements a previous paper, where we discussed data extraction and modelling into a complex network. Properties of the resulted network, communities and vertices are looked upon, in order to extract useful information and detect social phenomena. Temporal analysis methods are employed for examining the evolution of the web-site. The results obtained prove the natural development of the Web-site and the usefulness of CN analysis methods in this scenario.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"50 1 1","pages":"407-414"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents results of the analysis of a tourism information Web-site (AmFostAcolo.ro) by using Complex Networks (CN) methods. The work accomplished here complements a previous paper, where we discussed data extraction and modelling into a complex network. Properties of the resulted network, communities and vertices are looked upon, in order to extract useful information and detect social phenomena. Temporal analysis methods are employed for examining the evolution of the web-site. The results obtained prove the natural development of the Web-site and the usefulness of CN analysis methods in this scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旅游内容共享网络的复杂网络分析
本文介绍了利用复杂网络(CN)方法对旅游信息网站AmFostAcolo.ro进行分析的结果。这里完成的工作补充了之前的一篇论文,我们讨论了数据提取和建模到一个复杂的网络。通过观察得到的网络、社区和顶点的性质,提取有用的信息,检测社会现象。时间分析方法被用来检查网站的演变。结果证明了网站的自然发展和CN分析方法在该场景中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Reasoning on Strongly Distributed Multi-agent Systems Extensions over OpenCL for Latency Reduction and Critical Applications An Improved Upper-Bound Algorithm for Non-preemptive Task Scheduling Adaptations of the k-Means Algorithm to Community Detection in Parallel Environments Improving Malware Detection Response Time with Behavior-Based Statistical Analysis Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1