Improved estimation of average treatment effects under covariate‐adaptive randomization methods

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Neerlandica Pub Date : 2023-08-30 DOI:10.1111/stan.12319
Jun Wang, Yahe Yu
{"title":"Improved estimation of average treatment effects under covariate‐adaptive randomization methods","authors":"Jun Wang, Yahe Yu","doi":"10.1111/stan.12319","DOIUrl":null,"url":null,"abstract":"Estimation of the average treatment effect is one of the crucial problems in clinical trials for two or multiple treatments. The covariate‐adaptive randomization methods are often applied to balance treatment assignments across prognostic factors in clinical trials, such as the minimization and stratified permuted blocks method. We propose a model‐free estimator of average treatment effects under covariate‐adaptive randomization methods, which is least square adjustment for the estimator of outcome models. The proposed estimator is not only applicable to the case of binary treatment, but also can be extended to the case of multiple treatment. The proposed estimator is consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator and Ye's estimator are comparable, and it performs better than Bugni's estimator when the outcome model is linear. The proposed estimator has some advantages over targeted maximum likelihood estimator, Bugni's estimator and Ye's estimator in terms of the standard error and root mean squared error when the outcome model is nonlinear. The proposed estimator is stable for the from of outcome model. Finally, we apply the proposed methodology to a data set that studies the causal effect promotional videos mode on the school‐age children's educational attainment in Peru.This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"5 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12319","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of the average treatment effect is one of the crucial problems in clinical trials for two or multiple treatments. The covariate‐adaptive randomization methods are often applied to balance treatment assignments across prognostic factors in clinical trials, such as the minimization and stratified permuted blocks method. We propose a model‐free estimator of average treatment effects under covariate‐adaptive randomization methods, which is least square adjustment for the estimator of outcome models. The proposed estimator is not only applicable to the case of binary treatment, but also can be extended to the case of multiple treatment. The proposed estimator is consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator and Ye's estimator are comparable, and it performs better than Bugni's estimator when the outcome model is linear. The proposed estimator has some advantages over targeted maximum likelihood estimator, Bugni's estimator and Ye's estimator in terms of the standard error and root mean squared error when the outcome model is nonlinear. The proposed estimator is stable for the from of outcome model. Finally, we apply the proposed methodology to a data set that studies the causal effect promotional videos mode on the school‐age children's educational attainment in Peru.This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协变量自适应随机化方法下平均治疗效果的改进估计
在两种或多种治疗的临床试验中,平均治疗效果的估计是关键问题之一。在临床试验中,协变量自适应随机化方法通常用于平衡预后因素之间的治疗分配,例如最小化和分层排列块方法。我们提出了协变量自适应随机化方法下平均治疗效果的无模型估计量,即结果模型估计量的最小二乘调整。所提出的估计量不仅适用于二元处理的情况,而且可以推广到多重处理的情况。所提出的估计量是一致且渐近正态分布的。仿真研究表明,该估计量与Ye的估计量具有可比性,且在输出模型为线性的情况下,其性能优于Bugni的估计量。当结果模型为非线性时,所提出的估计量在标准误差和均方根误差方面优于目标极大似然估计量、Bugni估计量和Ye估计量。所提出的估计量对于结果模型是稳定的。最后,我们将提出的方法应用于一个数据集,该数据集研究了宣传片模式对秘鲁学龄儿童教育成就的因果效应。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
期刊最新文献
On global robustness of an adversarial risk analysis solution Heterogeneous dense subhypergraph detection General adapted‐threshold monitoring in discrete environments and rules for imbalanced classes VC‐PCR: A prediction method based on variable selection and clustering Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1