A Big Network Traffic Data Fusion Approach Based on Fisher and Deep Auto-Encoder

Tao Xiao-ling, Kong De-yan, Wei Yi, Wang Yong
{"title":"A Big Network Traffic Data Fusion Approach Based on Fisher and Deep Auto-Encoder","authors":"Tao Xiao-ling, Kong De-yan, Wei Yi, Wang Yong","doi":"10.3390/INFO7020020","DOIUrl":null,"url":null,"abstract":"Data fusion is usually performed prior to classification in order to reduce the input space. These dimensionality reduction techniques help to decline the complexity of the classification model and thus improve the classification performance. The traditional supervised methods demand labeled samples, and the current network traffic data mostly is not labeled. Thereby, better learners will be built by using both labeled and unlabeled data, than using each one alone. In this paper, a novel network traffic data fusion approach based on Fisher and deep auto-encoder (DFA-F-DAE) is proposed to reduce the data dimensions and the complexity of computation. The experimental results show that the DFA-F-DAE improves the generalization ability of the three classification algorithms (J48, back propagation neural network (BPNN), and support vector machine (SVM)) by data dimensionality reduction. We found that the DFA-F-DAE remarkably improves the efficiency of big network traffic classification.","PeriodicalId":50362,"journal":{"name":"Information-An International Interdisciplinary Journal","volume":"3 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information-An International Interdisciplinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/INFO7020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Data fusion is usually performed prior to classification in order to reduce the input space. These dimensionality reduction techniques help to decline the complexity of the classification model and thus improve the classification performance. The traditional supervised methods demand labeled samples, and the current network traffic data mostly is not labeled. Thereby, better learners will be built by using both labeled and unlabeled data, than using each one alone. In this paper, a novel network traffic data fusion approach based on Fisher and deep auto-encoder (DFA-F-DAE) is proposed to reduce the data dimensions and the complexity of computation. The experimental results show that the DFA-F-DAE improves the generalization ability of the three classification algorithms (J48, back propagation neural network (BPNN), and support vector machine (SVM)) by data dimensionality reduction. We found that the DFA-F-DAE remarkably improves the efficiency of big network traffic classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Fisher和深度自编码器的大网络流量数据融合方法
为了减少输入空间,通常在分类之前进行数据融合。这些降维技术有助于降低分类模型的复杂性,从而提高分类性能。传统的监督方法需要标记样本,而当前的网络流量数据大多没有标记。因此,通过同时使用标记和未标记数据,而不是单独使用每一个数据,可以构建更好的学习器。为了降低数据维数和计算复杂度,提出了一种基于Fisher和深度自编码器(DFA-F-DAE)的网络流量数据融合方法。实验结果表明,DFA-F-DAE通过数据降维提高了J48、bp神经网络(BPNN)和支持向量机(SVM)三种分类算法的泛化能力。我们发现DFA-F-DAE显著提高了大网络流量分类的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8.3 months
期刊最新文献
Sentiment Analysis using a CNN-BiLSTM Deep Model Based on Attention Classification A Study on the Changes in Safety Perception of Air Passengers in the Living with COVID-19 Era: The Case of South Korea Going Back to the Basic of Green Economy: Special Reference to Economic Interpretation and Policies Research on the Revitalization of the Defensive Fortress of the Great Wall Based on the Adversarial Interpretive-Structure Model An Analysis of Effect of Stress on Self-Efficacy of Flight Trainees in Korea: Using Multiple Regression Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1