Single-ended fault location for transmission lines using traveling wave and multilayer perceptron network

M. N. Hashim, M. K. Osman, M. N. Ibrahim, A. F. Abidin, Mat Nizam Mahmud
{"title":"Single-ended fault location for transmission lines using traveling wave and multilayer perceptron network","authors":"M. N. Hashim, M. K. Osman, M. N. Ibrahim, A. F. Abidin, Mat Nizam Mahmud","doi":"10.1109/ICCSCE.2016.7893632","DOIUrl":null,"url":null,"abstract":"Transmission lines are subjected to many kind of fault. Therefore fault location scheme is needed to determine the exact location of fault. This paper proposed a method for estimating transmission line fault location system using traveling wave method and artificial neural network (ANN). The method starts by decomposing the current signal from the faulted phase using DWT technique. Then, time fault measurement is extracted from the decomposed signal. Finally, a type of ANN called multilayer perceptron network (MLP) is used to locate the fault location. The proposed method is benchmark against the existing method and evaluated by using 5 measurement indexes; Coefficient of Determination (R2) as well as four error measures-Percentage Prediction Error (PPE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results shows that integration of traveling wave and ANN absolutely could improve the performance especially for fault occurs in short distance.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"10 1","pages":"522-527"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Transmission lines are subjected to many kind of fault. Therefore fault location scheme is needed to determine the exact location of fault. This paper proposed a method for estimating transmission line fault location system using traveling wave method and artificial neural network (ANN). The method starts by decomposing the current signal from the faulted phase using DWT technique. Then, time fault measurement is extracted from the decomposed signal. Finally, a type of ANN called multilayer perceptron network (MLP) is used to locate the fault location. The proposed method is benchmark against the existing method and evaluated by using 5 measurement indexes; Coefficient of Determination (R2) as well as four error measures-Percentage Prediction Error (PPE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results shows that integration of traveling wave and ANN absolutely could improve the performance especially for fault occurs in short distance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于行波和多层感知器网络的输电线路单端故障定位
输电线路容易发生各种各样的故障。因此,需要故障定位方案来确定故障的准确位置。提出了一种基于行波法和人工神经网络的输电线路故障定位系统估计方法。该方法首先利用小波变换技术对故障相位的电流信号进行分解。然后,从分解后的信号中提取时间故障测量值。最后,使用一种称为多层感知器网络(MLP)的人工神经网络进行故障定位。以现有方法为基准,采用5个度量指标对方法进行评价;决定系数(R2)以及四种误差测量-百分比预测误差(PPE),均方误差(MSE),均方根误差(RMSE)和平均绝对百分比误差(MAPE)。结果表明,行波与人工神经网络的结合绝对可以提高系统的性能,特别是对于发生在短距离内的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1