{"title":"Issues in the performance measurement of constraint-satisfaction techniques","authors":"J.C. Tay, C. Quek","doi":"10.1016/S0954-1810(00)00013-3","DOIUrl":null,"url":null,"abstract":"<div><p>The richness of the constraint satisfaction problem (or CSP) in representing combinatorial search maladies has resulted in a torrent of techniques for efficiently solving them. These techniques have focused on discovering better backtrack points, learning from dead-ends and avoiding repetitious interference, problem reduction method and the use of network heuristics. Much of this research has derived innovative methods for solving the CSP, however, the evaluations of the techniques have remained diverse and in many cases, statistically inaccurate.</p><p>Another issue with regard to the performance measurement of constraint satisfaction techniques is the inability to model computational constraint processing cost. It is not uncommon to find evaluations that are based on CSPs that differ only on the percentage of constraints and the tightness of each constraint. This may be justifiable if it can be established that they are the only contributing factors of the performance variable. The three aspects mentioned above comprise this paper's main focus points. They come under the general headings of <em>Modelling CSP Difficulty, Modelling Constraint Cost</em> and <em>Elucidating Major Performance Factors</em> respectively. This paper seeks to provide a set of proposals with respect to the above three well-known areas so as collectively to enhance the robustness of evaluations conducted in the field of constraint satisfaction.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"14 4","pages":"Pages 281-294"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00013-3","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181000000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The richness of the constraint satisfaction problem (or CSP) in representing combinatorial search maladies has resulted in a torrent of techniques for efficiently solving them. These techniques have focused on discovering better backtrack points, learning from dead-ends and avoiding repetitious interference, problem reduction method and the use of network heuristics. Much of this research has derived innovative methods for solving the CSP, however, the evaluations of the techniques have remained diverse and in many cases, statistically inaccurate.
Another issue with regard to the performance measurement of constraint satisfaction techniques is the inability to model computational constraint processing cost. It is not uncommon to find evaluations that are based on CSPs that differ only on the percentage of constraints and the tightness of each constraint. This may be justifiable if it can be established that they are the only contributing factors of the performance variable. The three aspects mentioned above comprise this paper's main focus points. They come under the general headings of Modelling CSP Difficulty, Modelling Constraint Cost and Elucidating Major Performance Factors respectively. This paper seeks to provide a set of proposals with respect to the above three well-known areas so as collectively to enhance the robustness of evaluations conducted in the field of constraint satisfaction.