Deep Learning Based Target Tracking and Classification Directly in Compressive Measurement for Low Quality Videos

Roxana Flores-Quispe, Yuber Velazco-Paredes
{"title":"Deep Learning Based Target Tracking and Classification Directly in Compressive Measurement for Low Quality Videos","authors":"Roxana Flores-Quispe, Yuber Velazco-Paredes","doi":"10.5121/sipij.2019.10602","DOIUrl":null,"url":null,"abstract":"This paper proposes a method based on Multitexton Histogram (MTH) descriptor to identify patterns inimages of human parasite eggs of the following species: Ascaris, Uncinarias, Trichuris, Hymenolepis Nana, Dyphillobothrium-Pacificum, Taenia-Solium, Fasciola Hepatica and Enterobius-Vermicularis. These patterns are represented by textons of irregular shapes in their microscopic images. This proposed method could be used for diagnosis of Parasitic disease and it can be helpful especially in remote places. This paper includes two stages. In the first a feature extraction mechanism integrates the advantages of cooccurrence matrix and histograms to identify irregular morphological structures in the biological images through textons of irregular shape. In the second stage the Support Vector Machine (SVM) is used to classificate the different human parasite eggs. The results were obtaining using a dataset with 2053 human parasite eggs images achieving a success rate of 96,82% in the classification. In addition, this research shows that the proposed method also works with natural images.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/sipij.2019.10602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper proposes a method based on Multitexton Histogram (MTH) descriptor to identify patterns inimages of human parasite eggs of the following species: Ascaris, Uncinarias, Trichuris, Hymenolepis Nana, Dyphillobothrium-Pacificum, Taenia-Solium, Fasciola Hepatica and Enterobius-Vermicularis. These patterns are represented by textons of irregular shapes in their microscopic images. This proposed method could be used for diagnosis of Parasitic disease and it can be helpful especially in remote places. This paper includes two stages. In the first a feature extraction mechanism integrates the advantages of cooccurrence matrix and histograms to identify irregular morphological structures in the biological images through textons of irregular shape. In the second stage the Support Vector Machine (SVM) is used to classificate the different human parasite eggs. The results were obtaining using a dataset with 2053 human parasite eggs images achieving a success rate of 96,82% in the classification. In addition, this research shows that the proposed method also works with natural images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的低质量视频压缩测量目标跟踪与分类
本文提出了一种基于多文本直方图(Multitexton Histogram, MTH)描述子的人类寄生虫虫卵模式识别方法:Ascaris、Uncinarias、Trichuris、Hymenolepis Nana、Dyphillobothrium-Pacificum、Taenia-Solium、Fasciola肝炎和Enterobius-Vermicularis。这些图案在显微图像中由不规则形状的纹理表示。该方法可用于寄生虫病的诊断,特别是在偏远地区。本文分为两个阶段。第一种特征提取机制结合了共发生矩阵和直方图的优点,通过不规则形状的文本来识别生物图像中的不规则形态结构。第二阶段采用支持向量机(SVM)对不同的人寄生虫卵进行分类。使用2053张人类寄生虫卵图像的数据集获得结果,分类成功率为96.82%。此外,研究表明,该方法也适用于自然图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning A Comparative Study of Machine Learning Algorithms for EEG Signal Classification Combining of Narrative News and VR Games: Comparison of Various Forms of News Games Mixed Spectra for Stable Signals from Discrete Observations Fractional Order Butterworth Filter for Fetal Electrocardiographic Signal Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1